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We propose a system of four quantum dots designed to study the competition between three types of

interactions: Heisenberg, Kondo, and Ising. We find a rich phase diagram containing two sharp features:

a quantum phase transition (QPT) between charge-ordered and charge-liquid phases and a dramatic

resonance in the charge liquid visible in the conductance. The QPT is of the Kosterlitz-Thouless type with

a discontinuous jump in the conductance at the transition. We connect the resonance phenomenon with the

degeneracy of three levels in the isolated quadruple dot and argue that this leads to a Kondo-like emergent

symmetry from left-right Z2 to Uð1Þ.
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Strong electronic correlations create a variety of inter-
esting phenomena including quantum phase transitions [1],
emergence of new symmetries [2], and Kondo resonances
[3]. It is likely that new, yet undiscovered, phenomena
can arise from unexplored competing interactions. Today,
quantum dots provide controlled and tunable experimental
quantum systems to study strong correlation effects.
Further, unlike most materials, quantum dots can be mod-
eled using impurity models that can be treated theoretically
much more easily. Single quantum dots have been studied
extensively, both theoretically and experimentally, which
has led to a firm understanding of their Kondo physics
[4,5]. More recently, the focus has shifted to multiple
quantum dot systems where a richer variety of quantum
phenomena become accessible [4,5]. These include emer-
gent symmetries (the symmetry of the low energy physics
is larger than the symmetry of the Hamiltonian) [6] and
quantum phase transitions [7–9].

In this work we propose a quadruple quantum dot sys-
tem, that is experimentally realizable, in which three com-
peting interactions determine the low temperature physics:
(1) Kondo-like coupling of each dot with its lead,
(2) Heisenberg coupling between the dots, and (3) Ising
coupling between the dots. Thus, there are two dimension-
less parameters with which to tune the competition. The
pairwise competing interactions, Kondo-Heisenberg and
Kondo-Ising, have both been studied previously. The two
impurity Kondo model with a Heisenberg interaction
between the impurities shows an impurity quantum phase
transition (QPT) from separate Kondo screening of the two
spins at small exchange to a local spin singlet (LSS) phase
at large exchange. This has received extensive theoretical
[7,10,11] and experimental [5] attention. The competition
between Kondo and Ising couplings has also been studied
theoretically for two impurities [8], including in the quan-
tum dot context [8,9]; however, no experimentally possible
realization of this competition has been proposed to date.

Our system consists of four quantum dots and four leads,
as shown in Fig. 1(a), with two polarized (spinless)

electrons on the four dots. We find that the system has a
rich phase diagram, Fig. 1(b), in terms of the strength of the
Heisenberg interaction controlled by t and the Ising inter-
action controlled by U0. In the absence of the Ising inter-
action we start in the LSS phase. Upon increasing the Ising

FIG. 1 (color online). (a) Quadruple-dot system. U and U0 are
electrostatic interactions while t and � involve electron tunnel-
ing. (b) Ground state phase diagram as a function of the Ising-
Kondo tuning U0=� and the Heisenberg-Kondo tuning t=�,
where U ¼ 3:0 and � ¼ 0:2. Two distinct phases—charge or-
dered (CO) and charge liquid—are separated by a KT quantum
phase transition [blue crosses (numerical) and green dashed line
(schematic)]. Several crossovers lie within the charge-liquid
phase. Red stars mark the level crossing where the Uð1Þ �
Uð1Þ state is found (numerical). The charge Kondo region lies
between the red and blue lines. ‘‘LSS’’ denotes the local spin
singlet state (Heisenberg coupling dominates), while when both
Heisenberg and Ising couplings are weak, the system consists
of individually screened Kondo states on the left and right. The
black dashed line with arrow shows where the calculations for
Figs. 2 and 3 have been done.
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strength, we find that the system first evolves continuously
to a new Kondo-type state with a novel Uð1Þ �Uð1Þ
strong-coupling fixed point, where the symmetry of the
low energy physics enhances from left-right Z2 to Uð1Þ.
Then there is a crossover to a SUð2Þ charge Kondo state.
Finally, an additional small increase in U0 causes a QPT of
the Kosterlitz-Thouless (KT) type to a charge-ordered state
(CO) (as in Refs. [8,9]) consisting of an unscreened doubly
degenerate ground state [12].

Model.—The quantum dots in Fig. 1(a) are capacitively
coupled in two ways: U is the vertical interaction (between
Lþ and L� ; Rþ and R� ) and U0 is along the diagonal
(between Lþ and R� ; L� and Rþ ). Along the hori-
zontal, there is no capacitive coupling, but there is direct
tunneling t (between Lþ and Rþ ; L� and R� ). Each
dot couples to a conduction lead through � ¼ �V2�where
� is the density of states of the leads at the Fermi energy.
The whole system is spinless. We consider only the regime
in which the four dots contain two electrons.

The system Hamiltonian is H ¼ Hlead þHimp þHcoup,

where Hlead ¼ P
i;s;k�kc

y
iskcisk describes the four conduc-

tion leads (i ¼ L; R; s ¼ þ;�), and Hcoup ¼
V
P

i;s;kðcyiskdis þ H:c:Þ describes the coupling of the leads

to the dots which produces the Kondo interaction. Himp is

the Anderson-type Hamiltonian

Himp ¼
X

i¼L;R

X

s¼þ;�
�dd

y
isdis þ

X

i¼L;R

Un̂iþn̂i�

þU0ðn̂Lþn̂R� þ n̂L�n̂RþÞ
þ t

X

s¼þ;�
ðdyLsdRs þ dyRsdLsÞ: (1)

We take U � U0 so that there is one electron on the left
and one on the right.

We can reformulate Himp as an exchange Hamiltonian

by noticing that the right-hand (left-hand) sites form a

pseudospin: ~Si ¼ P
s;s0d

y
si ~�ss0dsi=2. When t � U, the

effective Hamiltonian for the quantum dots is

Heff
imp ’ JH ~SL � ~SR � ~JzS

z
LS

z
R; (2)

where JH ’ 4t2=ðU�U0=2Þ and ~Jz ’ 2U0. Thus t controls
the strength of the Heisenberg interaction among the dots,
and U0 controls the Ising coupling. The eigenstates of the
impurity site are the usual (pseudo)spin singlet and triplet
states, jSi, j þ þi, j � �i, and jT0i.

Two limits of our model have been studied previously.
First, for U0 ¼ 0, it becomes the well-known two impurity
Kondo model [10,11]. If direct charge transfer is totally
suppressed, a QPT occurs between a Kondo screened state
(in which the impurities fluctuate between all four states,
singlet and triplet) and a LSS [10,11]. When direct tunnel-
ing is introduced, the QPT is replaced by a smooth cross-
over [11]. Second, when t ¼ 0, the model has [8,9] a
KT-type QPT between the Kondo screened phase at small
U0 and a CO phase at large U0. The CO phase has an

unscreened doubly degenerate ground state corresponding
to j þ þi and j � �i.
We solve the model (1) exactly by using finite-

temperature world line quantumMonte Carlo (QMC) simu-
lation with directed loop updates [13,14]. We study the
regime in which there is a LSS state in the absence of Ising

coupling: 4t2=U > TL=R
K , where TL=R

K is the Kondo tempera-

ture of the left or right pseudospin individually. Taking the
leads to have a symmetric constant density of states, � ¼
1=2D, with half-band-width D ¼ 2, we focus on the case
U ¼ 3, � ¼ 0:2, and t ¼ 0:3. � ¼ 1=T is the inverse tem-
perature. AsU0 is varied [a horizontal scan in Fig. 1(b)], the
gate potential is chosen such that �d ¼ �ðUþU0Þ=2, plac-
ing the dots right at the midpoint of the two electron regime.
Thermodynamics—As a first step toward distinguishing

the different phases, we look at the local charge suscepti-

bility �loc
c � R�

0 hAð�ÞAð0Þid�, where A � nLþ þ nRþ �
nL� � nR� and ni;s is the charge density of the dot labeled
i; s. Figure 2(a) shows �loc

c as a function of temperature for
different values of U0. The curves show three types of
behavior. First, for small Ising coupling (U0 � 0:11), �loc

c

is roughly constant at low T and has a peak at higher
temperature. This is the LSS phase. The value of T at
which �loc

c peaks decreases as the energy spacing between
the singlet jSi and doublet, fj þ þi; j � �ig, decreases.
Second, at the other extreme, for large Ising coupling
(U0 � 0:15), �loc

c behaves as 1=T down to our lowest T.
This is a clear signature of the CO phase in which the two
charge states j þ þi and j � �i are degenerate. Third, for
intermediate values of U0, �loc

c becomes large and then
either decreases slightly at our lowest T or saturates. This
behavior can be produced by either a near degeneracy
between the singlet and doublet states or by charge
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FIG. 2 (color online). (a) Local charge susceptibility as a
function of temperature. The power-law behavior of the top
three curves indicates the CO phase. The peak and low-T
constants in the lowest curves indicate the LSS state. The
low-T saturation of the middle curves is due to Kondo-like
screening. (b) Pesudospin-pseudospin correlation as a function
of U0 for different �. Inset: Zoom near the crossing point. The
crossing of the singlet and doublet levels occurs at U0

LC ¼ 0:142,
corresponding to level crossing (U ¼ 3, � ¼ 0:2, and t ¼ 0:3).
The error bars are from statistical error.
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Kondo screening of the doublet fj þ þi; j � �ig. As we
will see from the conductance data below, the QPT to the
CO phase occurs at a value U0

KT between 0.146 and 0.15.
To extract the position of the level crossing between jSi

and fj þ þi; j � �ig, we calculate the pseudospin correla-
tion function hSzLSzRi as a function of U0 for different T
[Fig. 2(b)], where Szi ¼ ðn̂iþ � n̂i�Þ=2. For U0 ¼ 0, the
ground state is the LSS so that hSzLSzRi ’ �0:2 is close to

�1=4. On the other hand, for large U0, in the CO phase,
hSzLSzRi is positive and approaches 1=4. (The charge fluc-

tuations due to tunneling to the leads causes the values
to differ slightly from 	1=4.) The crossing point of the
curves for different temperatures gives the position of the
(renormalized) level crossing. The inset shows that it
occurs at hSzLSzRi 
 1=12, which is consistent with the

isolated-dots limit. The position of the level crossing is,
then, U0

LC 
 0:142; note that this does not coincide with

the QPT to the CO phase (0:146<U0
KT < 0:15).

Conductance.—Conductance is a crucial observable ex-
perimentally. However, the QMC method is only able to
provide numerical data for the imaginary time Green func-
tion at discrete Matsubara frequencies—the conductance
cannot be directly calculated. The zero bias conductance
for an impurity model can be obtained [15] by extrapolat-
ing to zero frequency. We have recently shown that this
method works very well for Anderson-type impurity mod-
els in the Kondo region at low temperature [16].

We use this method [12] to find the conductance between
the left and right leads as a function of U0 for different T;
the results are shown in Fig. 3. ForU0 small (U0 & 0:1), the
conductance is small because the phase shift is nearly zero
in the LSS state [10]. For U0 large (U0 > 0:15), the con-
ductance is also small and approaches zero as U0 ! 1,
consistent with the argument in Ref. [8]. At intermediate
values of U0, there is a strikingly sharp conductance peak
near the value of U0 where the level crossing occurs. Here,
the conductance increases as T decreases and approaches
the unitary limit 2e2=h as T ! 0. The position of the con-
ductance peak approaches the level crossing U0 ¼ 0:142
at low temperature [12]. Its association with the level
crossing suggests that this peak comes from fluctuations
produced by the degeneracy of jSi and fj þ þi; j � �ig.

A sharp jump appears after the peak: notice that the
conductance at U0 ¼ 0:146 increases at lower temperature
while that at 0.15 decreases [see Figs. 3(b) and 3(c) for
clarity]. The latter behavior is the signature of the CO
phase, while the former suggests a Kondo-like phase,
namely, the dynamic screening of the fj þ þi; j � �ig
doublet. Thus, this sharp jump is associated with the KT
QPT from the screened to the CO phase [8], which occurs
between U0 ¼ 0:146 and 0.15.

Effective theory near the level crossing.—To gain insight
into the conductance peak, we develop an effective theory
near the level crossing. Using �=U as a small parameter,
we make a Schrieffer-Wolff transformation to integrate out
jT0i; to include tunneling, processes of order �t=U2 must

be included [17]. Higher-order terms in �=U are neglected.

In the leads, only the combinations
P

kc
y
isk � cy0;is need be

considered as these are the locations to which the dots
couple. The resulting effective Kondo Hamiltonian reads

Heff
Kondo ¼ JI?ðMIþSI� þMI�SIþÞ þ 2JIzM

I
zS

I
z

þ JII?ðMIIþSII� þMII�SIIþÞ þ 2JIIz M
II
z S

II
z : (3)

The definitions of pseudospins type I and II—the operators
M act on the dots and the operators S act on the lead sites—
are given in the supplementary material [12]. For t=U � 1
and particle-hole symmetry, J?I ’ JzI ’ 4V2=ðUþU0Þ and
J?II ’ JzII ’ 8V2t=ðUþU0Þ2.
Renormalization effects inHeff

Kondo can be analyzed using

poor man’s scaling [18], yielding the scaling equations

dJI?=d lnD ¼ �2�ðJI?JIz þ 3JII?J
II
z Þ

dJII?=d lnD ¼ �2�ðJII?JIz þ 3JI?J
II
z Þ

dJIz=d lnD ¼ �2�½ðJI?Þ2 þ ðJII?Þ2�
dJIIz =d lnD ¼ �4�JI?J

II
?: (4)

Numerical solution of these equations reveals that at a
certain value ofD all the coupling constants simultaneously
diverge. This defines the problem’s characteristic energy
scaleD0,which can be considered theKondo temperature at
the level crossing, TLC

K . The coupling constants have a fixed

ratio as they diverge: limD!D0
JI?:J

II
?:J

I
z:J

II
z ! ffiffiffi

2
p

:
ffiffiffi
2

p
:1:1,

suggesting an emergent symmetry in the ground state.

FIG. 3 (color online). (a) Zero bias conductance as a function
of U0 for two values of �. Inset: Zoom on the peak caused by the
Uð1Þ �Uð1Þ ground state. The T ¼ 0 expectation from the
effective theory near the level crossing is indicated schematically
by the black solid line; the two points of discontinuity (the level
crossing and the KT QPT) are marked by dashed lines. (b),
(c) Conductance as a function of temperature forU0 ¼ 0:146 and
0.15, respectively; the opposite trend in these two curves shows
that they are on opposite sides of the QPT. The error bars are
from both statistical and extrapolation error.

PRL 105, 256801 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

17 DECEMBER 2010

256801-3



Symmetry analysis.—The six S operators form an SOð4Þ
algebra [12]. However, the six M operators do not; rather
they form part of an SUð3Þ algebra—the missing operators
are j þ þih� � j and j � �ihþ þ j [12]. Since Heff

Kondo is

the product of two objects which generate different alge-
bras, the symmetry of the system must be a subgroup of
both SOð4Þ and SUð3Þ. To study the complete symmetry
group of both the bare and fixed-point Hamiltonians, con-
sider the total z component of pseudospins type I and II,

SIz;tot � MI
z þ

P
kS

I
z;k, SIIz;tot � MII

z þP
kS

II
z;k. SI=IIz;k is de-

fined by replacing c0 with ck in the definition of SI=IIz .
One can check that ½SIz;tot; Hlead þHeff

Kondo� ¼ 0, which

gives a (pseudo)spin Uð1Þ symmetry for the bare
Hamiltonian. The bare Hamiltonian also commutes with
interchanging L and R or interchangingþ and�. Thus, the
symmetry of the bare Hamiltonian is Uð1ÞS � Z2;LR �
Z2;þ� [an irrelevant charge Uð1Þ is ignored].

At the fixed point, limD!D0
JI?=J

II
? ! 1 implies that both

SIz;tot and SIIz;tot commute with the Hamiltonian: there is an

additional Uð1Þ symmetry. Furthermore, note that
expði�SIIz;totÞ generates the L $ R transformation for

� ¼ �. Therefore, the Z2;LR symmetry of the bare

Hamiltonian is enhanced, becoming an emergent Uð1Þ
symmetry. The complete symmetry group at the fixed point
(ground state) is Uð1ÞS �Uð1ÞLR � Z2;þ�, where the

Z2;þ� symmetry is irrelevant for the Kondo physics.

Experimental accessibility.—We address two main ex-
perimental issues: making of the system and sensitivity
to symmetry of parameters. Because of the tunneling t, a
small capacitive coupling Uh between dots in the horizon-
tal direction will be present. However, the QPTandUð1Þ �
Uð1Þ state both still exist provided that U0 �Uh > U0

KT.
This may be achieved by using floating metallic electrodes
[19] or an air bridge [20] over the diagonal dots to boostU0.
Experimentally, tuning through the transition will result
from changing t rather than U0 [i.e., a vertical cut in
Fig. 1(b)]. When tuning t, Uh will be affected, but the
change is small and can be neglected. We need U � U0 to
exclude configurations involving both electrons on the
left or right side; the total number of electrons in the four
dots can be determined by higher temperature Coulomb
blockade experiments.

Possible experimental observation is greatly aided by
the fact that not all the symmetries are essential. Those
involving the tunneling between the dots or the coupling
to the leads, for instance, merely change the coupling
constants in the effective Hamiltonian. In both cases, a
renormalization-group analysis shows that the Uð1Þ �
Uð1Þ strong-coupling fixed point remains stable. For the
QPT, since the asymmetry of tþ and t� does not introduce
a relevant operator, it does not affect the essential nature
of the QPT.

For our scenario, the one crucial symmetry is that j þ þi
and j � �i be degenerate; this can be achieved by fine-
tuning the gates controlling the levels in the dots. For the

Uð1Þ �Uð1Þ state we need to have the three-level crossing
(by varying one parameter) which gives rise to the effective
Hamiltonian Eq. (3). If the detuning is smaller than TLC

K ,

the crossover is still sharp and the Uð1Þ �Uð1Þ state
remains stable. For the QPT, the detuning 	� induces a
relevant perturbation in the CO phase [9]. However, a sharp
(but continuous) crossover does still occur in the conduc-
tance as long as 	� � TLC

K and T & 	� [9]. Note that

observation of a charge Kondo (CK) effect separately in
the left and right dots could be used to zero in on a small 	�
because of the requirement 	� < TCK

K .
We thank G. Finkelstein and A.M. Chang for useful

discussions. This work was supported in part by the U.S.
NSF Grant No. DMR-0506953.

[1] S. Sachdev, arXiv:0901.4103.
[2] R. Coldea et al., Science 327, 177 (2010).
[3] P. Coleman, arXiv:cond-mat/0206003.
[4] M. Grobis, I. G. Rau, R.M. Potok, and D. Goldhaber-

Gordon, arXiv:cond-mat/0611480.
[5] A.M. Chang and J. C. Chen, Rep. Prog. Phys. 72, 096501

(2009).
[6] T. Kuzmenko, K. Kikoin, and Y. Avishai, Phys. Rev. Lett.

89, 156602 (2002); T. Kuzmenko, K. Kikoin, and Y.

Avishai, Phys. Rev. B 69, 195109 (2004).
[7] M. Vojta, Philos. Mag. 86, 1807 (2006).
[8] M. Garst, S. Kehrein, T. Pruschke, A. Rosch, and M. Vojta,

Phys. Rev. B 69, 214413 (2004).
[9] M. R. Galpin, D. E. Logan, and H. R. Krishnamurthy,

Phys. Rev. Lett. 94, 186406 (2005); J. Phys. Condens.

Matter 18, 6545 (2006).
[10] I. Affleck, A.W.W. Ludwig, and B.A. Jones, Phys. Rev. B

52, 9528 (1995), and references therein.
[11] G. Zaránd, C.-H. Chung, P. Simon, and M. Vojta, Phys.

Rev. Lett. 97, 166802 (2006), and references therein.
[12] See supplementary material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.105.256801 for text

addressing (1) extracting the conductance from the

QMC calculations, (2) the shape of the conductance

peak, (3) more detail about the effective theory near the

level crossing, and (4) an effective theory near the QPT.
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