
Explosive Percolation Transition is Actually Continuous

R.A. da Costa,1 S. N. Dorogovtsev,1,2 A. V. Goltsev,1,2 and J. F. F. Mendes1

1Departamento de Fı́sica da Universidade de Aveiro, I3N, 3810-193 Aveiro, Portugal
2A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia

(Received 13 September 2010; revised manuscript received 1 November 2010; published 14 December 2010)

Recently a discontinuous percolation transition was reported in a new ‘‘explosive percolation’’ problem

for irreversible systems [D. Achlioptas, R.M. D’Souza, and J. Spencer, Science 323, 1453 (2009)] in

striking contrast to ordinary percolation. We consider a representative model which shows that the

explosive percolation transition is actually a continuous, second order phase transition though with a

uniquely small critical exponent of the percolation cluster size. We describe the unusual scaling properties

of this transition and find its critical exponents and dimensions.
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Introduction.—Percolation is one of the basic notions in
statistical and condensed matter physics [1]. When one
increases progressively the number of connections be-
tween nodes in a network, above some critical number
(percolation threshold) a giant connected (percolation)
cluster emerges in addition to finite clusters. This percola-
tion cluster contains a finite fraction of nodes and links in a
network. The percolation transition was widely believed to
be a typical continuous phase transition for various net-
works architectures and space dimensionalities [2–4], so it
shows standard scaling features, including a power-law
size distribution of finite cluster sizes at the percolation
threshold. Recently, however, it was reported that a re-
markable percolation problem exists in which the percola-
tion cluster emerges discontinuously and already contains
a finite fraction of nodes at the percolation threshold [5].
This conclusion was based on simulations of a model in
which each new connection is made in the following way:
choose at random two links that could be added to the
network, but add only one of them, namely, the link con-
necting two clusters with the smallest product of their
sizes. To emphasize this surprising discontinuity, this
kind of percolation was named ‘‘explosive’’ [5]. Further
investigations of ‘‘explosive percolation’’ in this and simi-
lar systems, also mainly based on numerical simulations,
supported this strong result but, in addition, surprisingly
for discontinuous phase transitions, revealed scaling be-
havior [6–13], in particular, power-law critical distribu-
tions of cluster sizes [9,10,12] resembling those found in
continuous percolation transitions. This self-contradicting
combination of discontinuity and scaling have made ex-
plosive percolation one of the challenging and urgent
issues in the physics of disordered systems.

Here we resolve this confusion. We show that there is not
actually any discontinuity at the explosive percolation
threshold, contrary to the conclusions of the previous inves-
tigators. We consider a representative model demonstrating
this new kind of percolation and show that the explosive
percolation transition is a continuous, second-order phase

transition but, importantly, with a uniquely small critical
exponent � � 0:0555 of the percolation cluster size.
Model.—One of the simplest systems in which classical

percolation takes place is as follows. Start with N uncon-
nected nodes, where N is large, and at each step add a
connection between two uniformly randomly chosen
nodes. In essence, this is a simple aggregation process
[14], in which at each step, a pair of clusters, to which
these nodes belong, merge together [Fig. 1(a)]. If we
introduce ‘‘time’’ t as the ratio of the total number of added
links in this system, L, and its size N, i.e., t ¼ L=N, then
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FIG. 1 (color online). (a) In classical percolation, at each step,
two randomly chosen nodes are connected by a new link. If these
nodes belong to different clusters, these clusters merge. (b) In the
explosive percolation model, at each step, two pairs of nodes are
chosen at random, and for each of the pairs, the node belonging
to the minimal cluster is selected. These two nodes (and so their
clusters) are connected by a new link. (c) The relative size S of a
percolation cluster versus t for explosive percolation obtained
by simulation of the model with 2� 109 nodes (1000 runs) and,
for comparison, SðtÞ for classical percolation. Inset: the log-log
plot S vs t for this data.
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the percolation cluster of relative size S emerges at the
percolation threshold tc ¼ 1=2 and grows with t in the
following way: S� ��, where � ¼ jt� tcj and � ¼ 1.
At t ¼ tc, the cluster size distribution nðsÞ (fraction of
finite connected components of s nodes) in this classical
problem is power law nðsÞ � s�� with � ¼ 5=2 [1].

In this Letter, we consider a direct generalization of this
process. Namely, at each step, we sample twice: (i) choose
two nodes uniformly at random and compare the clusters to
which these nodes belong; select that node of the two ones,
which belongs to the smallest cluster; (ii) choose a second
pair of nodes and, as in (i), select the node belonging to the
smallest of the two clusters; and (iii) add a link between the
two selected nodes thus merging the two smallest clusters
[Fig. 1(b)]. Repeat this procedure again and again. Note
that in (i) and (ii), a cluster can be selected several times.
This is the case for the percolation cluster. These rules
contain the key element of other explosive percolation
models, e.g., model [5]. Namely, for merging, select the
minimal clusters from a few possibilities. Importantly, our
procedure provides even more stringent selection of small
components for merging than model [5] since it guarantees
that the product of the sizes of two merging clusters is the
smallest of the four possibilities [each of the first pair of
chosen nodes (i) may connect with any node of the second
pair (ii)] in contrast to selection from only two possibilities
in model [5]. Consequently, if we show that the transition
in our model is continuous, than model [5] also must have a
continuous transition. One should stress that the explosive
percolation processes are irreversible in stark contrast to
ordinary percolation. In the latter, one can reach any state
either adding or removing connections. For explosive per-
colation, only adding links makes sense, and an inverse
process is impossible.

We simulated this irreversible aggregation process for a
large system of 2� 109 nodes. When plotted over the full
time range, the obtained dependence SðtÞ shows what seems
to be discontinuity at the critical point tc [Fig. 1(c)] similar
to previous results. On the other hand, the inspection of the
log-log plot S versus t� tc [Fig. 1(c), inset] reveals that,
surprisingly, the obtained dependence SðtÞ can be described
by the power law S / ðt� tcÞ� which indicates a continu-
ous transition, in contrast to the previous investigations.
This data still do not allow us to completely rule out a
discontinuity, since we actually only succeed to check that
the law S0 þ bðt� tcÞ� with S0 < 0:05 fits our data. This
shows that for a definite conclusion, even so large a system
is not sufficient, and a discontinuity can be ruled out
or validated only by analytical arguments for the infinite
size limit.

Equations.—We address this problem analytically and
numerically by considering the evolution of the size dis-
tribution PðsÞ for a finite cluster of s nodes to which a
randomly chosen node belongs, PðsÞ ¼ snðsÞ=hsi, where
hsi is the average cluster size (the ratio of the number of

nodes and the total number of clusters). This distribution
satisfies the sum rule

P
sPðsÞ ¼ 1� S. Another important

characteristic in this model is the probability QðsÞ that if
we choose at random two nodes, then the smallest of the
two clusters to which these nodes belong is of size s.
QðsÞ provides us with the size distribution of merging
clusters. Here

P
sQðsÞ ¼ 1� S2. If we introduce the

cumulative distributions PcumðsÞ �
P1

u¼s PðuÞ andQcum �P1
u¼s QðuÞ, then probability theory gives QcumðsÞ þ S2 ¼

½PcumðsÞ þ S�2. Consequently
QðsÞ ¼ ½PcumðsÞþPcumðsþ 1Þþ 2S�PðsÞ

¼ ½2� 2Pð1Þ� 2Pð2Þ� . . .� 2Pðs� 1Þ�PðsÞ�PðsÞ;
(1)

that is QðsÞ is determined by Pðs0Þ with s0 � s. The evo-
lution of these distributions in the infinite system is exactly
described by the master equation

@Pðs; tÞ=@t ¼ s
X

uþv¼s

Qðu; tÞQðv; tÞ � 2sQðs; tÞ; (2)

which generalizes the standard Smoluchowski equation.
The only difference from the classical percolation problem
[14] is Qðs; tÞ instead of Pðs; tÞ on the right-hand side of
this equation. Thus we have a chain of coupled equations,
which should be solved analytically or numerically.
Numerical solution.—To find a numerical solution, first

solve the first equation of the chain, which gives Pð1; tÞ.
Substitute this result into the second equation and solve
it, which gives Pð2; tÞ, and so on. In this way we find
numerically the distributions Pðs; tÞ and Qðs; tÞ at any t
for infinite N. Solving 106 equations gives the evolution

of these distributions for 1 � s � 106 and SðtÞ ffi
1�P

106

s¼1 Pðs; tÞ. The log-log plot [Fig. 2] shows that the

obtained SðtÞ dependence is well described by the power
law S / �� with � ¼ t� tc, tc ¼ 0:923 207 508ð2Þ, and
small � ¼ 0:0555ð1Þ (which is very close if not equal to
1=18 ¼ 0:055 55 . . . ). Here we find tc as the point at which
PðsÞ is power law over the full range of s; see below.
To check the correctness and precision of our calculations,
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FIG. 2 (color online). Log-log plot S vs t� tc obtained by
solving Eq. (2).
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we repeated them for ordinary percolation and obtained the
classical results with the same precision as for our model.
Although the small exponent � makes it difficult to ap-
proach the narrow region of small S, fitting this data by the
law S0 þ b��, we find that S0 is smaller than 0.005. This
supports our hypothesis that the transition is continuous,
but still does not prove it. Moreover, both our extensive
simulations and the numerical solution results clearly dem-
onstrate that the analysis of the SðtÞ data cannot validate or
rule out a discontinuity.

Figure 3(a) shows the evolution of the distribution
Pðs; tÞ, which we compare with the evolution of this dis-
tribution for ordinary percolation, Fig. 3(b). The difference
is strong at t < tc, where the distribution for explosive
percolation has a bump, but above tc the behaviors are
similar. The distribution function Qðs; tÞ evolves similarly
to Pðs; tÞ in the full time range. At the critical point, we find
power law PðsÞ � s1�� and QðsÞ � s3�2� in the full range
of s (6 orders of magnitude), where � ¼ 2:047 62ð2Þ, which
is close to 2, as in Refs. [9,10,12], in contrast to � ¼ 5=2
for classical percolation. The first moments of these dis-
tributions, hsiP � P

ssPðsÞ (the mean size of a finite cluster
to which a randomly chosen node belong) and hsiQ �P

ssQðsÞ, demonstrate power-law critical singularities
hsiP � j�j��P and hsiQ � j�j��Q , where exponents �P ¼
1:0111ð1Þ and �Q ¼ 1:0556ð5Þ both below and above the

transition. Note that �P > 1 in contrast to ordinary perco-
lation, where the mean-field value of exponent � is 1.
Figure 3(c) shows the set of time dependencies of Pðs; tÞ
for fixed cluster sizes [the time dependencies of Qðs; tÞ are

similar]. These dependencies strongly differ from those for
ordinary percolation [Fig. 3(d)] in the following respect.
The peaks in Fig. 3(c) for explosive percolation are below
tc, while the peaks in Fig. 3(d) for ordinary percolation are
symmetrical with respect to the critical point at large s.
The inspection of these numerical results in the critical

region reveals a scaling behavior typical for continuous

phase transitions, Pðs; tÞ ¼ s1��fðs�1=�Þ and Qðs; tÞ ¼
s3�2�gðs�1=�Þ, respectively, where fðxÞ and gðxÞ are scal-
ing functions, and � ¼ ð�� 2Þ=�, which is a standard
scaling relation. One should stress that these functions
are quite unusual. Figure 4 shows the resulting scaling
functions and, for comparison, the scaling function for
ordinary percolation. Remarkably, fðxÞ and, especially,
gðxÞ, obtained at t < tc, are well fitted by Gaussian func-
tions. These functions differ dramatically from the mo-

notonously decaying exact scaling function e�2x=
ffiffiffiffiffiffiffi
2�

p
for

ordinary percolation. Effective elimination of the smallest
clusters in this merging process results in the minima of the
scaling functions at x ¼ 0. On the other hand, the stunted
emergence of large clusters results in the particularly rapid
decay of these functions at x 	 1.
Analytical treatment.—The key point of our study is the

following strict analytical derivation. We start from the fact
that in this problem the cluster size distributions are power
law at the percolation threshold. We observed these power
laws over 6 orders of magnitude, and they were observed
in works [9,10,12] though in less wide range of s [15].
Now we strictly show that if the cluster size distribution is
power law at the critical point, Pðs; tcÞ / s1��, then this
transition is continuous. Introducing generating functions,
�ðzÞ � P1

s¼1 PðsÞzs and �ðzÞ � P1
s¼1 QðsÞzs, where

�ðz ¼ 1Þ ¼ 1� S and �ðz ¼ 1Þ ¼ 1� S2, we represent
Eq. (2) in the form

@½1� �ðz; tÞ�=@t ¼ �@½1� �ðz; tÞ�2=@ lnz: (3)

Above the percolation threshold, at large s, we have
QðsÞ ffi 2SPðsÞ; see Eq. (2). Consequently, for z close to
1, we get 1� �ðzÞ ffi 2S½1� �ðzÞ � S=2�, and so in this
region, Eq. (3) leads to the equation
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system. (a) The evolution of the distribution PðsÞ below and at
(solid lines) and above (dashed lines) the percolation threshold
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@�ðz; tÞ=@t ¼ 8S2ðtÞ½�ðz; tÞ � 1þ SðtÞ=2�@�ðz; tÞ=@ lnz:
(4)

We use the asymptotics Pðs; tcÞ ffi fð0Þs1�� as the initial
condition for this equation. For the generating function,
this gives the singularity 1� �ðz; tcÞ ffi analytic terms�
fð0Þ�ð2� �Þð1� zÞ��2 at z ¼ 1. We assume that S ffi
B��, i.e., that the transition is continuous, substitute this
expression into Eq. (4), and solve this equation using our
initial condition. In implicit form, the solution is

lnz ¼ 8B2

1þ 2�

�
1� �� B

2

1þ 2�

1þ 3�
��

�
�1þ2�

�
�
fð0Þj�ð2� �Þj

1� �

��1=ð��2Þ
: (5)

At z ¼ 1, this readily leads to the relation � ¼ 2þ �=ð1þ
3�Þ [and so � ¼ 1=ð1þ 3�Þ] which validates our assump-
tion that S / ��. This scaling relation agrees with our
numerical results. Relation (5) allows us express B in terms
of fð0Þ and �. Substituting our numerical results, fð0Þ ¼
0:046 18ð2Þ and � ¼ 2:047 62ð2Þ, into this expression gives
B ¼ 1:075, which agrees with the corresponding value
obtained by solving Eq. (2) numerically. So the results of
this report are self-consistent. Our results are summarized
in Table I. Assuming a scaling form for the distributions
gives �P ¼ 1þ 2� and �Q ¼ 1þ �, which agree with our
numerical solution of Eq. (2). Furthermore, applying stan-
dard scaling relations [1], we calculate the fractal dimen-
sion for this model, df ¼ 2=� ¼ 2ð1þ 3�Þ, and the upper
critical dimension, du ¼ df þ 2� ¼ 2ð1þ 4�Þ. The latter
determines the finite size effect: tcð1Þ � tcðNÞ / N�2=du ,
where 2=du ¼ 0:818ð1Þ. Interestingly, the obtained fractal
and upper critical dimensions are less than 3. They are
much smaller than those for ordinary percolation, which
are 4 and 6, respectively. Our model is infinite dimensional,
i.e., mean-field theories must work, which makes the ob-
served smallness of exponent � particularly remarkable.
Furthermore, our model allows a natural generalization.
Let each minimal cluster for merging be selected of m
possibilities, m 
 1. We found that with increasing m, tc
approaches 1 and � rapidly decreases with m, but the
transition remains continuous.

Conclusions.—We have shown that the explosive perco-
lation transition is actually continuous. It is the smallness
of the� exponent for the size of the percolation cluster that
makes it virtually impossible to distinguish this phase

transition from a discontinuous one even in very large
systems. Indeed, suppose that N ¼ 1018 and � � 1=18.
The addition of one link changes t by �t ¼ 1=N, which is
the smallest time interval in the problem. Then a single step
�t ¼ 10�18 from the percolation threshold already gives
S� ð�tÞ� � 0:1. The real absence of explosion topples
an already established view of explosive percolation. We
believe, however, that, thanks to the observed unique
properties of this phase transition, our findings make this
new class of irreversible systems an even more appealing
subject for exploration.
We thank S. Fortunato and F. Radicchi for useful infor-

mation and many stimulating discussions on explosive
percolation and G. J. Baxter for helpful comments. This
work was partially supported by POCI projects No. FIS/
108476/2008 and SAU-NEU/103904/2008, and by the
ARTEMIS and SOCIALNETS EU projects.

[1] D. Stauffer and A. Aharony, Introduction to Percolation
Theory (Taylor & Francis, London, 1994).

[2] S. N. Dorogovtsev, A.V. Goltsev, and J. F. F. Mendes, Rev.
Mod. Phys. 80, 1275 (2008).

[3] S. N. Dorogovtsev, Lectures on Complex Networks
(Oxford University Press, Oxford, 2010).

[4] Here we do not touch upon hybrid (mixed) transitions in
bootstrap percolation and k-cores in random graphs; see
S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes,
Phys. Rev. Lett. 96, 040601 (2006).

[5] D. Achlioptas, R.M. D’Souza, and J. Spencer, Science
323, 1453 (2009).

[6] Y. S. Cho, J. S. Kim, J. Park, B. Kahng, and D. Kim, Phys.
Rev. Lett. 103, 135702 (2009).

[7] F. Radicchi and S. Fortunato, Phys. Rev. Lett. 103, 168701
(2009).

[8] R.M. Ziff, Phys. Rev. Lett. 103, 045701 (2009).
[9] F. Radicchi and S. Fortunato, Phys. Rev. E 81, 036110

(2010).
[10] R.M. D’Souza and M. Mitzenmacher, Phys. Rev. Lett.

104, 195702 (2010).
[11] R.M. Ziff, Phys. Rev. E 82, 051105 (2010).
[12] Y. S. Cho, S.-W. Kim, J. D. Noh, B. Kahng, and D. Kim,

Phys. Rev. E 82, 042102 (2010).
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