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We study the few-body physics of trapped atoms or molecules with electric or magnetic dipole moments

aligned by an external field. Using exact numerical diagonalization appropriate for the strongly correlated

regime, as well as a classical analysis, we show howWigner localization emerges with increasing coupling

strength. TheWigner states exhibit nontrivial geometries due to the anisotropy of the interaction. This leads

to transitions between different Wigner states as the tilt angle of the dipoles with the confining plane is

changed. Intriguingly, while the individual Wigner states are well described by a classical analysis, the

transitions between different Wigner states are strongly affected by quantum statistics. This can be

understood by considering the interplay between quantum-mechanical and spatial symmetry properties.

Finally, we demonstrate that our results are relevant to experimentally realistic systems.
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Recent experimental advances in cold quantum gases
have placed focus on atoms or molecules with permanent
dipole moments. A Bose-Einstein condensate of 52Cr
atoms has been realized [1,2], and recently Dy atoms
were cooled and trapped [3]. These atom species have
magnetic dipole moments of several Bohr magnetons.
A promising development is the trapping and cooling of
diatomic molecules with electric dipole moments [4–6].
The realization of a molecular fermionic 40K87Rb gas was
a significant breakthrough [7]. Dipolar gases offer access to
a broad range of novel few- and many-body physics, in
single traps as well as in optical lattices, which has spurred
intensive theoretical interest (see the recent reviews by
Baranov [8] and Lahaye et al. [9]). The attractive part of
the dipolar interaction leads to a collapse instability in
three dimensions [9]. A remedy is to use traps of reduced
dimensionality. For instance, the interaction between di-
poles in a 2D plane is predominantly repulsive when they
form a sufficiently large angle with respect to the plane (see
Fig. 1). This stabilizes the system against collapse [10].
A variety of interesting many-body states for dipoles in
2D has been examined theoretically [10–12].

Here,we examine a 2D systemof this kind in the regime of
strong repulsive interactions using exact diagonalization as
well as a classical analysis. Contrary to the analogousWigner
states of electrons in metals [13] and quantum dots [14], the
anisotropic dipolar interaction is shown togive rise toWigner
states with nontrivial geometries that depend on the align-
ment angle. This leads to transitions between different geom-
etries that are crucially influenced by quantum statistics. We
finally argue that our results are experimentally observable.

We consider particles with mass m and a magnetic
(electric) dipole moment � (d) which is aligned by an
external field such that it lies in the xz plane, forming an
angle � with the x axis (see Fig. 1). The interaction
between two electric dipoles separated by a vector r is

VðrÞ ¼ d2

4��0

1� 3cos2�rd
r3

; (1)

where �rd is the angle between a dipole moment and r. The
particles are confined in the xy plane by a quasi-two-
dimensional harmonic trap Vtrapðx;y;zÞ¼m½!2

0ðx2þy2Þþ
!2

zz
2�=2, with !z � !0, so that the particles are in the

ground state orbital of the z direction. The corresponding
oscillator lengths are lz and l0 with lz � l0. Throughout
this Letter, we consider dipoles with no internal spin
degrees of freedom.
The effective interaction V2Dðr; �Þ in the xy plane is

obtained by integrating out the harmonic motion in the
z direction. This yields
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FIG. 1 (color online). Dipolar particles in a quasi-2D trap in
the xy plane. The gray circles indicate the contours of the
effective interaction potentials in the plane. In the left-hand
panel the dipoles are perpendicular (� ¼ 90�) to the plane of
motion and the interaction is isotropic in the plane, while in the
right-hand panel the dipoles are tilted (� ¼ 55�) and the inter-
action is anisotropic.
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where � ¼ r2=ð2~l2zÞ and K0 and K1 are irregular modified
Bessel functions. (For the special cases � ¼ 90� and
� ¼ 0�, expressions are also given in [12,15].) For electric
dipoles, D ¼ dffiffiffiffiffiffiffiffi
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magnetic dipoles. The effective interaction (2) reduces to
the bare interaction (1) when r � lz. Depending on the
angle �, V2Dðr; �Þ contains both attractive and repulsive
regions. For � ¼ 90� it is isotropic in the xy plane,
whereas it is anisotropic with increasing attractive regions
for decreasing angle. Since the focus is on Wigner states in
this Letter, we restrict our analysis to the case arccos 1ffiffi

3
p �

54:7� <� � 90�, for which the interaction without the
z integration is purely repulsive.

Our numerical results are obtained by exact diagonaliza-
tion using a basis of 2D harmonic oscillator orbitals. The
multiparticle basis space is truncated by including all states
with (kinetic and potential) energy up to some cutoff value
Ecut. Here, good convergence is achieved at Ecut < 20@!,
and variations of Ecut do not qualitatively affect our con-
clusions. Because of the computational effort involved, the
method is limited to particle numbersN & 4. In the follow-
ing we set lz=l0 ¼ 0:1. Our results are not sensitive to this
ratio as long as it is sufficiently small. In Fig. 2 we plot the
particle density of the ground state for two different tilt
angles � for a system with N ¼ 3 dipolar bosons and

fermions. For weak coupling, D ¼ 0:1, the dipoles essen-
tially form an ideal gas. The dip in the density for the
fermions in Fig. 2 is simply a shell effect. With increasing
interaction, the dipoles localize in Wigner states. Com-
paring the interaction energy with the confinement kinetic
energy yields the conditionD2 � 1 for Wigner crystalliza-
tion. Our numerical results confirm this, showing that the
crystallized structure emerges continuously forD * 1 both
for bosons and fermions for this finite-size system; for
D ¼ 5 the localization can be clearly seen in Fig. 2.
The Hamiltonian and the density of the ground state

have rotational symmetry for � ¼ 90�. To demonstrate
particle localization, we therefore study the pair-correlated

density �ðr; r0Þ ¼ hĉ yðrÞĉ yðr0Þĉ ðr0Þĉ ðrÞi. Fixing one
particle at position r, it gives the probability distribution
of the remaining N � 1 particles. We see from Fig. 2 that
for strong interactions and � ¼ 90�, the particles localize
at the vertices of an equilateral triangle. For � ¼ 55�, the
interaction is anisotropic in the xy plane and almost van-
ishing between two dipoles whose relative vector is paral-
lel to the x axis. Figure 2 shows that the ground state for
D ¼ 5 features the three particles on a straight line for both
bosons and fermions. This exploits the weaker regions of
the interaction and minimizes the energy. A classical
analysis minimizing the trap and interaction energies of
three dipoles in a 2D trap indeed yields that the lowest
energy configuration is all particles on a line along the
x axis for� & 62� and the three particles in an equilateral
triangle for � * 62�.
We now examine the transition from a line-shaped

to a triangular-shaped ground state with increasing angle.
Figure 3 depicts the lowest energy states of the three
dipoles and their density as a function of the tilt angle �.
In agreement with the classical analysis, the ground state
changes from a linear to a triangular Wigner state as � is
increased. For D ¼ 5, the transition occurs at � ’ 56� for
fermions and � ’ 57� for bosons, which is somewhat
lower than the classical prediction � ’ 62� due to quan-
tum fluctuations. The density of the triangular state appears
rotationally symmetric since the energy of three aligned
classical dipoles in an equilateral triangle can be shown to
be independent of its orientation.
There is an intriguing difference between the transitions

from linear- to triangular-shaped Wigner states for fermi-
onic and bosonic dipoles: For fermions, the transition is a
sharp crossing, whereas, for bosons, it is a continuous
mixing of the triangular and linear states corresponding
to an avoided crossing. This can be understood by consid-
ering that the Hamiltonian is invariant under the mirror

operations P̂x: ðx; yÞ ! ð�x; yÞ and P̂y: ðx; yÞ ! ðx;�yÞ.
The energy eigenstates must therefore also be eigenstates

of P̂x and P̂y with eigenvalues	1. The key point is that for

theWigner states one can infer their eigenvalues under these
symmetry operations from their quantum statistics.
Consider the three-particle line configuration discussed

FIG. 2 (color online). Particle densities for three different
coupling strengths, with dipole tilt angles � ¼ 90� and � ¼
55�. The insets show the pair-correlated density functions; the
crosses mark the position of one particle. The x and y axes range
from �4l0 to 4l0, both here and in Figs. 3 and 4.
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above. Applying P̂x simply corresponds to exchanging the
coordinates of the two outer localized particles. For bosons,
this must give a plus sign due to the symmetrization of the
wave function. For fermions onemust correspondingly get a
minus sign. Likewise, since all three particles have a finite

probability to appear on the x axis, the eigenvalue for P̂y

must beþ1 for both bosons and fermions. We write this as
ðPx; PyÞB;line ¼ ðþ;þÞ for the bosonic line state and

ðPx; PyÞF;line ¼ ð�;þÞ for the fermionic line state.

The triangular Wigner state is more subtle, as it contains
components with the triangle in all possible orientations.
Take the component with one of the vertices of the triangle

lying on the x axis: Operating with P̂y on this component

corresponds to swapping the particles located at the two
other vertices of the triangle symmetrically placed above

and below the x axis; for bosons and fermions this will give
the eigenvalue þ1 and �1, respectively, for this compo-
nent. Since the Wigner state has to be an eigenfunction of

P̂y, all other components of the wave function correspond-

ing to tilted triangles must come in symmetric-
antisymmetric pairs mirrored in the x axis, so that the total
wave function has the eigenvalue þ1 (bosons) or �1

(fermions) for P̂y. The same analysis applies to P̂x, and

we conclude that for the triangular Wigner state
ðPx; PyÞB;triangle ¼ ðþ;þÞ for bosons and ðPx; PyÞF;triangle ¼
ð�;�Þ for fermions. Since energy levels corresponding to
wave functions of the same symmetries cannot cross, the
arguments above explain why the line-triangle transition
for bosons corresponds to an avoided crossing, while it is
sharp for fermions. It is perhaps surprising that quantum
statistics plays an important role for the transitions be-
tween essentially classical Wigner states. This can, how-
ever, be understood by noting that the particles can overlap
during the transitions, meaning that quantum statistics
matters.
It is illuminating to connect the states in Fig. 3 to the

eigenstates of the angular momentum L̂z along the z axis
for � ¼ 90�: The lowest level in Fig. 3 naturally develops
into Lz ¼ 0 for � ¼ 90�, whereas the next two levels
correspond to Lz 	 3 and not Lz ¼ 	1 as one would
perhaps expect. This is because the strong repulsion favors
states with large jmj, which are more spatially extended.
In Fig. 4(a), we plot the four lowest energy states in the

limit of very strong interaction D ¼ 10 (the interaction
strength scales as D2). Comparing with Fig. 3, we see
that the difference between the bosons and fermions de-
creases with increasing coupling. This is as expected since
the system approaches classical behavior in this limit.
Reflecting this, the transition regions between different
ground states where quantum statistics is important are
smaller for D ¼ 10 than for D ¼ 5: The size of the dis-
cussed anticrossing is �E ¼ 0:53 for D ¼ 5 and �E ¼
0:22 for D ¼ 10. Also, the transition region has moved
to larger angle � ’ 59� approaching the classical value
� ’ 62� with increasing D.
In Fig. 4(b), we plot the density of the ground state of

N ¼ 4 fermionic dipoles for D ¼ 5. In this case, the di-
poles localize in a rhombic geometry that depends on the
tilt angle. To examine the case of higher particle numbers,

FIG. 3 (color online). The four lowest energy states for three
strongly interacting bosonic (top panel) and fermionic (bottom
panel) dipoles. By changing the dipole tilt angle �, the ground
state changes from a Wigner state with line geometry to one with
triangular geometry. The signs in brackets denote x and y
parities, as explained in the text.

FIG. 4 (color online). (a) The four lowest energy states for
very strong interaction (axes as in Fig. 3). (b) Density contours
for N ¼ 4 dipolar fermions.
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we present in Fig. 5 the result of a classical minimization
of the interaction and trap energy for N ¼ 19 dipoles.
The ground state configurations were found using an iter-
ative self-consistent procedure adjusting the particle posi-
tions to find the minimal energy. We see that, in analogy
with the N ¼ 3; 4 cases considered above, the geometry of
the lattice depends on the tilt angle. For � ¼ 90�, the
particles localize in a hexagonal lattice [16]. These classi-
cal calculations indicate that our main conclusions for
quantum-mechanical few-body systems should be relevant
also for larger systems.

The strong coupling effects considered here are reach-
able using typical experimental numbers. The KRb mole-
cule trapped by the JILA group [7] has an electric dipole
moment of 0.57 D, whereas the RbCs molecule studied by
the Innsbruck group has an electric dipole moment of
1.25 D [17,18]. Trapping lengths of l0 ¼ 1 �m or l0 ¼
0:1 �m yield coupling strengths between 0:6 & D2 & 50.
Also, there are alkali dimers with even larger dipole mo-
ments [6]. Using optical lattices, few-body systems with
ultracold molecules may be realized; see, e.g., the experi-
ment in Ref. [4].

To summarize, we studied systems of strongly interact-
ing bosonic and fermionic dipoles in a 2D harmonic trap,
using both exact diagonalization and classical analysis.
The dipolar interaction was shown to lead to a rich variety
of Wigner states with nontrivial geometries which depend
on the tilt angle of the dipoles with respect to the plane.
Even though the Wigner states themselves can be well
understood from a classical analysis, the transitions be-
tween different geometries as the tilt angle is changed
depends crucially on the quantum statistics of the dipoles.
We showed how the effects analyzed here are relevant for
typical experimental parameters.
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