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Spatial Intermittency of Surface Layer Wind Fluctuations at Mesoscale Range
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We study various hourly surface layer wind series recorded at different sites in the Netherlands by the
“Royal Netherlands Meteorological Institute.” By reporting all velocity magnitude correlation coeffi-
cients, associated with the available couples of locations, as a function of their spatial distance, we find
that they fall on a single curve. This curve turns out to be remarkably well described by a logarithmic
shape, characteristic of continuous cascades with an intermittency coefficient A> = 0.04 and an integral
scale L = 600 km. Along the same line, we study the scaling properties of spatial velocity increment
structure functions. This allows one to estimate the {(g) spectrum and to confirm an intermittent nature of
mesoscale fluctuations similar to the one observed in fully developed turbulence.
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From large geostrophic motions to turbulence, atmos-
pheric surface layer wind dynamics is a complex process
involving a wide range of spatiotemporal scales. The
modeling of wind speed behavior in the mesoscale range
(~ 1-1000 km) is of great interest in wind power genera-
tion or in order to control pollutant dispersion. In this
intermediate range of scales, the statistical properties of
velocity fluctuations are less known than at larger planetary
or at finer turbulent scales [1,2]. Indeed, atmospheric con-
ditions, terrain effects, and diurnal oscillations are well
known to play an important role in wind variations in the
mesoscale range. Several recent empirical studies suggest
that the concepts of universality and scale invariance, as
usually introduced in the description of fully developed
turbulence, may also be pertinent at larger scales [3-7].
However, since the observation of a k /3 spectrum by
Nastrom and Gage in the upper troposphere [8], there has
been a debate about the nature (2D-3D) of the energy
transfer and the existence of a direct or inverse cascade
in this intermediate range of scales [9]. In a recent work,
we have studied various time series of surface layer wind
velocity and provided evidence for the intermittent nature
of the wind time variations in the mesoscale range [10]. For
that purpose, we have used magnitude covariance analysis,
which has been shown to be a more efficient tool to study
intermittency than classical scaling analysis. Along the
same line, in this Letter, we would like to address directly
the question of the spatial intermittency of the wind veloc-
ity field. Since the database we consider consists of syn-
chronous wind series recorded at different locations, the
spatial variations of some statistics can be explored
through the way they depend on the distance of each pair
of sites.

Let us begin by recalling some basic facts on intermit-
tent fields and mainly reproduce arguments of Ref. [11] in
order to introduce magnitude correlation functions. In fully
developed turbulence, it is well known that the scaling
behavior of longitudinal structure functions S(g, €) departs
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from the dimensional prediction of Kolmogorov theory and
displays multiscaling:

S(g, €) = (|8v)(x, O]9y ~ €¢@  for p < € <L, (1)

where dv)(x, €) is the spatial longitudinal velocity incre-
ment over a scale €, (.) stands for the spatial mean, g is the
order of the structure function, 7 is the Kolmogorov dis-
sipation scale, and L is the integral (injection) scale. The
velocity field is considered multifractal because the {(q)
function is not linear but is curved (concave). A popular
model is the so-called log-normal model according to
which {(g) is a parabola. In the case of turbulence, such
aspectrum, {(q) = ¢(§ + 3’\72 - #, where A2 = /(0) =
0.025 is called the intermittency coefficient, provides a
very good fit of the data [12]. The study of intermittency
in fully developed turbulence has been the object of a huge
literature (see, e.g., [13]). Most of the arguments leading to
the observed multiscaling properties rely on the notion of a
cascade process. The famous Richardson picture, accord-
ing to which the energy is transferred from large eddies
down to the dissipative scales, led various authors to define
and study random multiplicative cascades. The simplest
1D log-normal random cascade measure [e.g., the dissipa-
tion field &(x)] is defined by an iterative construction over
an interval of size L (the integral scale): At each construc-
tion step n, all intervals are split in two equal parts on
which the density is multiplied by two independent factors
W, and W, of the same (log-normal) law and such that
E(W) =1 and so on. As remarked in Ref. [11], if one
considers the magnitude w,(x) defined as a logarithm of
the measure of each dyadic interval (of position x and scale
€), such a multiplicative construction becomes a simple
addition of independent identically distributed Gaussian
random variables along a dyadic tree. Since in the log-
normal case w,(x) is Gaussian, it is fully characterized by
its covariance function. In other words, the full cascade
construction can be encapsulated in covariance of w,(x). It
is easy to establish [11] that the (ultrametric) treelike
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structure implies that the covariance of w,(x) behaves, for
{=d=1L,as

Cov[wy(x), we(x + d)] = A2 1n(%). @)

This logarithmic covariance of the logarithm of multifrac-
tal process variations is at the heart of the notion of a
continuous cascade as introduced recently [14—17]. Such
a process, V(x), gets rids of any grid structure and has
increments that can be written as 8,V (x) = ¢“‘™g, where
w,() is a Gaussian (or log-infinitely divisible) process
whose covariance is given by Eq. (2) and ¢ is a white
Gaussian noise.

As advocated in Ref. [10] (see also [18]), the switching
from traditional (multi)fractal analysis, that relies on the
study of structure function scaling, to magnitude correla-
tion analysis is also interesting from a statistical point of
view. Indeed, the estimation of the intermittency coeffi-
cient A%, defined as the curvature of the {(g) spectrum, is
far more reliable when one uses Eq. (2) than Eq. (1). Notice
that log-correlated magnitudes have interesting applica-
tions in various fields like pure mathematics [16], theoreti-
cal and statistical physics [19], mathematical finance [18],
and turbulence. In this latter field, log correlations have
been directly observed in Lagrangian records in a high
Reynolds number turbulence experiment [20] while
squared logarithmic correlations have been observed on
longitudinal velocity series recorded at a given position
under various experimental conditions [12]. As shown by
Castaing [21] (see also [10]), when velocity variations are
recorded at a fixed position, the observed magnitude fluc-
tuations result from both Eulerian and Lagrangian dynam-
ics. If the associated spatial and temporal variations are
both governed by a random cascade process with log-
correlated magnitudes, it results that the observed time
correlation function should decrease as a squared loga-
rithm. This feature has been precisely confirmed from
experimental wind tunnel and jet records as reported in
Ref. [12]. In a recent study that was conducted by using
various wind series gathered in Corsica (France) and the
Netherlands, we have shown that the wind variations in the
atmospheric surface layer in a range of time scales extend-
ing from a few minutes to a few days are also characterized
by squared log-correlated magnitudes [10]. We have there-
fore suggested the existence of a cascading process, very
much like in the microscale (turbulent) range, involved in
the energy transfer from synoptic scales to finer scales. Our
goal in this Letter is to directly characterize this “cascade”
in the spatial domain by studying a basket of synchronous
wind speed time series recorded at different sites.

The data we use are hourly amplitudes and directions of
horizontal wind speeds collected, 10 m above ground level,
by the Royal Netherlands Meteorological Institute [22] at 27
different sites over the Netherlands from 1992/01/01 to 2008/
12/31. The spatial repartition of the sites, illustrated in Fig. 1,

FIG. 1 (color online). Spatial distribution of the 27 locations
over the Netherlands we use from the freely available Royal
Netherlands Meteorological Institute wind series database.

allows us to access to N; = 351 distances in a range from 10
to 300 km. For each site i, we denote by Vi(z) and V;(z) the
velocity components along, respectively, the north and west
directions. Let us consider the small scale time increments
(1 h) of these components: 8, Vi, = Vi (r+ 1) — Vi (1).
In Ref. [10], we have shown that the magnitudes associated
with V, and V, are identical, and, up to additive seasonal
components, one can write &,Vi(r) = e®®el(r) and
8, Vi(r) = e@' €(1), where (1) is the local magnitude of
velocity components of site i and €, and €, are two indepen-
dent Gaussian noises. Accordingly, a surrogate of the scalar
process @'(f) is obtained as w'(r) =3 In[8;Vi(1)* +
8,Vi(t)*], which is less noisy than individual magnitudes
In[|8, Vi(n)[] or In[|8, V;(1)[]. In Ref. [10], the time correla-
tion function of the so-defined magnitude w(¢) appeared to be
a “universal” squared logarithmic function (corresponding
to a cascade picture in both Lagrangian and Eulerian frames)
with an integral time close to 7 = 5 days.

The same kind of analysis can be reproduced in the
spatial domain by considering synchronous data at differ-
ent sites. If d;; is the spatial distance between sites i and j,
one can estimate the magnitude spatial correlation func-
tion as

C(d) = L EN (o'[k] = @Nw[k] = @),  (3)
N
k=1

where N is the size of the time samples (N = 1.6 X 10° for
the time series we consider) and @' = N~' 3V | wi[k]
stands for the empirical mean value of . In Fig. 2, the
obtained values of the correlations are reported for the 351
pairs of sites as a function of distances. One clearly ob-
serves that all points are distributed around a single slowly
decreasing function. We also see that a logarithmic cascade
covariance as given in Eq. (2) provides an excellent fit of
the data (solid line). We estimate the intermittency parame-
ter A =~ 0.04 while the integral scale is L ~ 600 km. From
the velocity records one can evaluate a mean traveled
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FIG. 2. Magnitude correlations as a function of the spatial
distance between two sites. (a) C(d) as a function of d for all
351 pairs of sites. The solid line represents the fit according to
the cascade logarithmic correlation [Eq. (2)] with A> = 0.04 =
0.008 and L =600 km. (b) The same plots as in (a) but in
semilog representation. A linear fit of the data in this represen-
tation provides a direct estimate of A> (from the slope) and L
(from the intercept). From the point dispersion amplitude around
each distance In(d), we have estimated the error on A? as a least
square error. The error on L concerns its logarithm so this scale
is estimated within roughly a factor of 2.

distance r(f) = \/[ff) Vo(wdul + [ [{V,(u)dul* as a
function of time ¢ and deduce a typical velocity V =
t'r(f) = 6 km/h [23]. The time scale associated with
the spatial integral scale L is therefore close to T =
LV~! =5 days, in full agreement with previously cited
single site observations of time fluctuations of w.

As far as standard scaling is concerned, one can also
estimate the spatial structure functions [Eq. (1)] as func-
tions of the pair distances along the same line. In turbu-
lence several works suggest that longitudinal and
transverse velocity increments show different multifractal
spectra. However, this difference is small, and, given the
level of noise in our data, we have checked that both
quantities lead to similar results so we report only results
for longitudinal structure functions which are computed
as S;i(qg)=N"'3N, IVﬁ(k) - Vljl(k)lq, where V) =
71V - 7 According to previous magnitude correlation
results, within the log-normal cascade model, one expects
the following scaling:

Si:(q) ~ d?.(q), with {(g) = q([—] + A_2> )2 q_zy
1 ij 2H >

“

where A? = 0.04 and the exponent value H [such as
[(1/H) = 1] has to be determined.

In Fig. 3(a), the estimated longitudinal structure functions
S(g, d) for ¢ =1,3,5 are plotted in the log-log scale.
Despite the strong noise, one clearly observes a global linear
increase and a linear fit can be performed. For ¢ = 3 we
measure a slope close to £(3) = 1. It thus appears that, like
in fully developed turbulence, spatial wind fluctuations in
the mesoscale domain are characterized by a main
Kolmogorov scaling exponent H = 1/3. The precise non-
linear shape of the spectrum is difficult to estimate because
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FIG. 3. Scaling of spatial structure functions. (a) In[S(q, d)] vs
In(d) for g = 1, 3, 5 (from bottom to top). Plots have been shifted
by arbitrary values for representation purpose. (b) Extended self-
similarity: In[S(g, d)] is plotted as a function of In[S(3, d)].
(c) Estimated {(g) spectrum (O) as compared to the theoretical
spectrum with /3 = 1 and A> = 0.04 (solid line). The errors have
been roughly estimated from the variations of the estimated
slopes in large scale and small scale ranges (d) {'(g) as a
function of ¢. For a log-normal cascade, one expects a decreas-
ing straight line of slope A> = 0.04 (solid line).

of the noise terms. This effect can be reduced within the
framework of extended self-similarity [25]. Indeed, in
Eq. (4), a prefactor K;;, which depends on the sites i and
J, is also involved in the scaling law, and one should there-
fore have InS;;(¢) = {(¢) In(d;;) + g InK;;. If one assumes
that £(3) = 1, expressing S;;(¢) as a function of S;;(3)
reduces the influence of K;; and leads to a better estimation
of {(q) [26]. The reduction of the noise can be observed in
Fig. 3(b), where InS(q, d) is plotted as a function of
InS(3, d). The £, function, in the range g € [0, 5], so ob-
tained by a linear regression, is plotted in Fig. 3(c). One sees
that a log-normal spectrum with an intermittency coefficient
A2 = 0.04 provides a good representation of the data. This
is confirmed in Fig. 3(d), where we have plotted the esti-
mated derivative of {(g) as a function of g: As expected in
the log-normal case, the function roughly decreases linearly
with a slope very close to the value we obtained in former
magnitude correlation analysis.

In summary, we have reported empirical evidence that
the spatial velocity fluctuations in the atmospheric surface
layer share many features with the microscale fully devel-
oped turbulence regime: They are characterized by scaling
properties with a scaling exponent H =~ 1/3 and by an
intermittent behavior which mainly manifests through the
slow decay of magnitude correlation functions. We have
found an intermittency coefficient A> = 0.04 larger than
the one usually observed in turbulence [12]. Our findings
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fully confirm previous results obtained by using single site
time fluctuations and allow one to rationalize recent ob-
servations about the strongly non-Gaussian nature of wind
velocity statistics at time scales separating the mesoscale
from the microscale regimes [6,7]. In Ref. [27], the authors
observed results similar to ours on horizontal velocity
statistics using lidar data (i.e., an exponent close to H =
1/3 and an intermittency coefficient close to 0.04) [28].

As far as the integral scale is concerned, it is noteworthy
that the value L = 600 km (or 7' = 5 days as measured in
Ref. [10]) precisely corresponds to the wave number ob-
served by Nastrom and Gage at the beginning of the k~5/3
range [8]. Such a characteristic scale has also been ob-
served in wind velocity correlation functions [31] or in
scaling properties of wind data or rainfalls [5,32]. It is
usually associated with front spatiotemporal dynamics
[1,2]. Since the energy transfer mechanism in the atmo-
sphere at the mesoscale range is still a matter of debate (see
[9] and references therein), it is rather difficult to definitely
interpret our results. It appears, however, that our observa-
tions preclude a 2D inverse cascade picture (as proposed by
Lilly [33]) and suggest a direct cascading picture as advo-
cated by various authors [3,9]. A last fundamental issue
related to our findings concerns the fact that most of the
large scale ““turbulent” features of the atmosphere could be
observed close to the surface. Note, however, that, as
observed in laboratory experiments (as, e.g., in
Ref. [34]), strong shear effects close to boundaries preserve
the cascade structure but may change the intermittent
properties of the flow.

We acknowledge the Royal Netherlands Meteorological
Institute [22] for the availability of their wind data.
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