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Stability of synchronization in delay-coupled networks of identical units generally depends in a

complicated way on the coupling topology. We show that for large coupling delays synchronizability

relates in a simple way to the spectral properties of the network topology. The master stability function

used to determine the stability of synchronous solutions has a universal structure in the limit of large

delay: It is rotationally symmetric around the origin and increases monotonically with the radius in the

complex plane. This allows a universal classification of networks with respect to their synchronization

properties and solves the problem of complete synchronization in networks with strongly delayed

coupling.
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Synchronization phenomena in networks are of great
importance [1] in many areas. Chaos synchronization of
lasers, for instance, may lead to new secure communication
schemes [2]. The synchronization of neurons is believed to
play a crucial role in the brain under normal conditions, for
instance, in the context of cognition and learning [3], and
under pathological conditions such as Parkinson’s disease
[4]. Time delay effects are a key issue in realistic networks.
For example, the finite propagation time of light between
coupled semiconductor lasers [5] significantly influences
the dynamics. Similar effects occur in neuronal [6] and
biological [7] networks.

To determine the stability of a synchronized state in a
network of identical units, a powerful method has been
developed [8], i.e., the master stability function (MSF).
Recent works [9,10] have started to investigate theMSF for
networks with coupling delays and found that the MSF
depends nontrivially on delay times.

In this work, we show that in the limit of large coupling
delays the MSF has a very simple structure. This solves the
problem of complete zero-lag synchronization for net-
works with large coupling delay. After briefly introducing
the notion of the MSF, we demonstrate the implications for
large coupling delays based on a scaling theory [11]. This
allows us to describe the synchronizability of networks
with strongly delayed coupling depending on the type of
node dynamics and spectral properties of the network
topology. For example, as recently conjectured [10], net-
works for which the trajectory of an uncoupled unit is also
a solution of the network cannot exhibit chaos synchroni-
zation for large coupling delay. The results presented here
confirm and generalize these previous findings.

Consider a system ofN identical units connected in a net-
work with a coupling delay � [10] (xi 2 Rd, i ¼ 1; . . . ; N):

_x iðtÞ ¼ f½xiðtÞ� þ XN

j¼1

gijh½xjðt� �Þ�: (1)

Here, gij is the real-valued coupling matrix, which deter-

mines the topology and the strength of each link in the
network, f is a (nonlinear) function describing the dynam-
ics of an isolated unit, and h is a possibly nonlinear coupling
function. To allow for an invariant synchronization mani-
fold (SM), the row sum� ¼ P

N
j¼1 gij of thematrix has to be

the same for each row i [8]. If the matrix is diagonalizable,
the stability of the synchronized solution is governed
by the MSF and the eigenvalues of the coupling matrix
gij. The MSF is defined as the maximum Lyapunov expo-

nent �maxðreic Þ as a function of the complex argument reic

arising from thevariational equation _�ðtÞ ¼ Df½xðtÞ��ðtÞ þ
reicDh½xðt� �Þ��ðt� �Þ, where xðtÞ is given by the dy-
namics within the SM. The synchronized state is stable for a
given coupling topology if the MSF is negative at all trans-
versal eigenvalues �k of the coupling matrix [�maxð�kÞ<
0]. Here, transversal eigenvalue refers to all eigenvalues
except for the eigenvalue � associated to perturbations
within the SMwith corresponding eigenvector (1; 1; . . . ; 1).
We restrict our analysis to maps [10], but all ingredients

of our argument are also valid for flows. For delay-coupled
maps the dynamics in the SM is governed by the equation
xkþ1¼fðxkÞþ�hðxk��Þwith � 2 N and xk 2 Cd or2 Rd

and the MSF is calculated for fixed � from

�kþ1 ¼ Ak�k þ reicBk�k�� (2)

with matrices Ak ¼ DfðxkÞ and Bk ¼ Dhðxk��Þ.
Note that when the delay is changed the dynamics in the

SM changes, too. Hence, we are not able to make predic-
tions about what happens as � is changed. However, at a
fixed large value of the delay time � we can analyze the
Lyapunov exponents arising from different values of reic

in Eq. (2). We do this in the following steps: First, we
analyze the two simpler cases when the dynamics in the
SM is a fixed point (FP) or a periodic orbit (PO). Then, to
expand the results to chaotic dynamics in the SM, we use
the fact that POs are dense in a chaotic attractor.
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For FPs and POs of delay differential equations, a scal-
ing theory for the eigenvalues or Floquet exponents in the
limit of large delay [11] shows that the spectrum consists in
both cases of two parts: a strongly unstable part arising
from unstable eigenvalues of the system without delay and
a pseudocontinuous spectrum for which the real parts of
the eigenvalues approach zero in the limit of large delay.
This scaling theory has been developed for flows; to prove
our statements, we will extend this theory to maps.

Fixed point.—Let us first consider the case of a FP in the
SM, for which A ¼ Ak and B ¼ Bk are constant. Making
the ansatz �k ¼ zk�0, we find an equation for the multi-
pliers z: det½A� zI þ reicBz��� ¼ 0, where I denotes the
identity matrix.

For the strongly unstable spectrum, we suppose there is a
solution with jzj> 1. Then in the limit of � ! 1 this
becomes det½A� zI� ¼ 0. Thus in the limit of large delay
the eigenvalues z of A with jzj> 1 are also solutions of
this equation and vice versa.

We are now interested in the pseudocontinuous spectrum,
i.e., the solutions with jzj � 1 in the limit of large �. We
make the ansatz z ¼ ð1þ �=�Þei!. In the limit � ! 1 we
have ð1þ �=�Þ�� � e�� and ð1þ �=�Þ � 1, and thus

det½A� Iei! þ re��eiðc��ÞB� ¼ 0 (3)

with � ¼ !�. As we will show below, ! as well as the
parameter � take on any (arbitrarily dense) values in
½��;��. From this it is clear that the phase c in the varia-
tional equation does not change �; i.e., the MSF is invariant
under phase shifts (rotations) and its value depends only on r.

Equation (3) is a polynomial in 	 ¼ re��eiðc��Þ for
which the roots can be calculated. For example, if B is
invertible, the roots 	 are the eigenvalues of the matrix
�B�1ðA� Iei!Þ. In general, each root 	 is a function
of !, and one finds the branches �ð!Þ ¼ � lnj	ð!Þj þ
lnr from the definition of 	. The function 	ð!Þ can admit
the zero value at some point !0, i.e., 	ð!0Þ ¼ 0, in the
case when the matrix A has an eigenvalue with jzj ¼ 1.
Indeed, as follows from Eq. (3), for 	 ¼ 0, ! ¼ !0, and
detB � 0 we have det½A� Iei!0� ¼ det½A� Iz� ¼ 0. In
all other cases, with detB � 0 and jzj � 1, the function
j	ð!Þj is bounded: 0<	0 � j	ð!Þj � 	1.

If there are no strongly unstable eigenvalues, the sign
of � determines the stability in the limit of large �, since
jzj � j1þ �=�j. It is clear that � increases monotonically
with increasing r, and, in particular, � is negative for small
r and positive for large r. Thus there is a critical radius r0
for which the first eigenvalue branch becomes unstable
(� > 0), and thus the MSF changes sign.

Note that we have obtained the function �ð!Þ on which
the solutions lie in the limit of large � but not yet the
exact values of !. These values can be calculated from

the expression 	ð!Þ ¼ re��ð!Þeiðc�!�Þ, which implies
Arg	ð!Þ ¼ c �!�þ 2�k for any integer k. Since
	ð!Þ is a known root of Eq. (3), this can be considered
as a transcendental equation for determining the solutions

! ¼ !k. In particular, it implies that the distance between
neighboring solutions !k �!k�1 ¼ ½Arg	ð!k�1Þ �
Arg	ð!kÞ�=�þ 2�=� ¼ 2�=�þOð1=�2Þ is proportional
to 1=� and the curve �ð!Þ is filled densely with equally
spaced roots as � ! 1.
For illustration, consider the simple case of a one-

dimensional complex map with A; B 2 C with jAj< 1.
In this case we can explicitly calculate the pseudo-
continuous spectrum �ð!Þ ¼ lnðjrBj=jA� ei!jÞ, which is
depicted in Fig. 1(a). For r < ð1� jAjÞ=jBj all the eigen-
values approach jzj ¼ 1 from the stable side, and for r >
ð1� jAjÞ=jBj there are always weakly unstable eigenval-
ues. Thus the critical radius is given by r0 ¼ ð1� jAjÞ=jBj.
Periodic orbit.—Now consider the variational Eq. (2)

with Ak and Bk being periodic in k with period T, corre-
sponding to a PO in the SM. We consider the case of
large delay, i.e., � � T. Making a Floquet-like ansatz
�k ¼ zkqk, where qk is T-periodic, we find

zqkþ1 ¼ Akqk þ reicBkz
��qk�n (4)

with n ¼ �modT 2 f0; 1; . . . ; T � 1g.
For the strongly unstable spectrum, again suppose

there is a solution with jzj> 1; then in the limit � ! 1,
the term z�� vanishes and we find zqkþ1 ¼ Akqk. By using
the periodicity of qk, this implies det½zT �Q

T
k¼1 Ak� ¼ 0,

where zT is a Floquet multiplier of the system �kþ1 ¼ Ak�k

without delay. Hence, if zT is a Floquet multiplier of the
equation without delay, with jzj> 1, then in the limit � !
1 it is also a solution of Eq. (2) and vice versa.
For the pseudocontinuous spectrum, we again make the

ansatz z ¼ ð1þ �=�Þei!. By taking the limit � ! 1,
Eq. (4) becomes

ei!qkþ1 ¼ Akqk þ re��eiðc��ÞBkqk�n (5)

with � ¼ !�. Thus one has to solve

½ei! �J þ �Aþ	 �B� ~q ¼ 0; (6)

FIG. 1 (color online). (a) Pseudocontinuous spectrum �ð!Þ
(lines) and location of the exact roots (crosses) for a one-
dimensional complex map for r ¼ 3:3> r0 ¼ 3 and r ¼ 2:7<
r0 ¼ 3. Parameters: A ¼ 0:4, B ¼ 0:2, c ¼ 0, and � ¼ 30.
(b) Contour line �max ¼ 0 of the MSF for coupled semiconduc-
tor lasers according to Eq. (8) for delay times � ¼ 1 (solid), 8
(dashed), 20 (dash-dotted), and 1000 (dotted).
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where 	 ¼ re��eiðc��Þ and ~q ¼ ðq1; . . . ; qTÞ. The matri-
ces �J, �A, and �B follow from Eq. (5), taking into account the
periodicity of Ak, Bk, and qk, e.g., �A ¼ diagfA1; . . . ; ATg.
Taking the determinant of the entire matrix in Eq. (6)

results in a polynomial in 	 ¼ re��eiðc��Þ (of maximum
order Td). Again, the roots 	 are functions of !, and we
can calculate the branches �ð!Þ ¼ � lnj	ð!Þj þ lnr,
where c and � drop out. As in the case of FPs, one can
show that the function j	ð!Þj is bounded: 0<	0 �
j	ð!Þj � 	1 unless the instantaneous system has a
Floquet multiplier z with jzj ¼ 1. Note that, for the FP
case as well as for the PO case, one can show that the
discussed strongly unstable and pseudocontinuous spec-
trum constitutes the entire spectrum.

We have found the same structure of theMSF for a PO in
the SM: The MSF is rotationally symmetric about the
origin in the complex plane. If without feedback (r ¼ 0)
the MSF is positive, then it is a positive constant in the limit
of large delay. Otherwise, it is a monotonically increasing
function of r, and it changes sign at a critical radius r0.

Chaotic dynamics.—Every chaotic attractor embeds an
infinite number of unstable periodic orbits (UPOs). It is
well known that the characteristic properties of the chaotic
system can be described in terms of these UPOs. One of the
most important examples is the natural measure of the
chaotic attractor which is concentrated at the UPOs and
can be expressed by the orbit’s Floquet multipliers [12].

Lyapunov exponents arising from variational equations
such as Eq. (2) have been discussed in the framework of PO
theory [13], too. In particular, it has been shown [14] that a
chaotic attractor in an invariant manifold loses its trans-
versal stability in a blowout bifurcation when the trans-
versely unstable orbits outweigh the transversely stable
orbits. To be precise, we divide the orbits into these two
groups and define [14] the transversely stable weight �s

T

and the unstable weight �u
T as

�u;s
T ¼ XN

u;s
T

j¼1

	TðjÞ�TðjÞ; (7)

where the sum goes over all Nu
T transversely unstable

and Ns
T transversely stable orbits with period T (or factors

of T), respectively. Here, 	TðjÞ is the weight of the jth
orbit, corresponding to the natural measure of a typical
trajectory in the neighborhood of the jth orbit, and �TðjÞ
is the transversal Lyapunov exponent of this jth orbit. The
weight of a PO is inversely proportional to the product of its
unstable Floquet multipliers [12]. The attractor is trans-
versely unstable if and only if in the limit of large T we
have �u

T > j�s
Tj. We now draw the connection to the scal-

ing theory for large �. Starting from r ¼ 0 (no feedback),
the transversal Lyapunov exponents �TðjÞ of each orbit can
increase only with increasing r, as shown above, and the
weights 	TðjÞ are not changed. In particular, for large
enough r any orbit becomes transversely unstable: Either
it is already unstable for r ¼ 0 and thus remains unstable,
or the pseudocontinuous spectrum goes to zero and for large

r it does so from the unstable side. Thus there exists a
minimum radius r0 for which the condition �u

T > j�s
Tj on

the weights is fulfilled. Note that since we consider the limit
� ! 1 we can evaluate the condition at arbitrarily large T.
Thus, in summary, the MSF for chaotic dynamics has the
same structure as for FPs and POs [the rotation symmetry
follows from the rotation symmetry of each �TðjÞ].
Let us now discuss what the structure of the MSF means

for the synchronizability of networks. We can classify
networks into three types depending on the magnitude
of the largest transversal eigenvalues �max in relation
to the magnitude of the row sum �: (a) j�maxj< j�j,
(b) j�maxj ¼ j�j, and (c) j�maxj> j�j.
As we have shown above, for stable synchronization it is

necessary that j�maxj< r0. If j�maxj> r0, the synchroniza-
tion is not stable. Since � is the eigenvalue of the coupling
matrix associated with the synchronous mode, the MSF
�maxð�Þ describes the local stability within the SM, i.e.,
�maxð�Þ> 0 for chaotic dynamics in the SMand�maxð�Þ<
0 for FPs or POs. This implies that j�j> r0 in the first case
and j�j< r0 in the latter case. In other words, the row sum
� gives an estimate of the critical radius r0. In particular, it
allows us to give a complete classification (Table I). In
networks of type (a) and (b) synchronization on a FP or a
PO (stable within the SM) is always stable. For type (c) this
dynamics may be stable or not depending on the particular
network topology (value of j�maxj) and the dynamics in the
SM (value of r0). On the other hand, chaos synchronization
is always unstable in networks of type (b) and (c), and itmay
be stable or not in networks of type (a) again depending on
the particular network and the dynamics.
Note that, in contrast to maps, autonomous flows with a

stable PO in the SM always have r0 ¼ j�j, due to the PO’s
Goldstone mode. Thus for this case synchronization will be
unstable for type (c) networks. For type (b) networks the
stability of the synchronized solution in this case under-
goes a destabilizing bifurcation.
We now list some examples for the three types of net-

works. The classification follows from the eigenvalue struc-
ture of the corresponding coupling matrices gij. Mean field

coupled systems are of type (a), and networks with only
inhibitory or only excitatory connections are (up to the row
sum factor) stochastic matrices and are thus of type (a) or
(b). Rings of unidirectionally coupled elements and two
bidirectionally coupled elements are of type (b), and hence
these systems never exhibit chaos synchronization.
Another conclusion we can draw from the structure of

the MSF confirms the conjecture stated in Ref. [10]:
Networks with � ¼ 0 are of type (c), and thus chaos
synchronization is always unstable.
Concerning the impact of noise on the delay-coupled

network [15], for the case of FPs and POs stable synchro-
nization will be robust to small noise strength. On the other
hand, for the chaotic case there may exist another radius
rb < r0, where the first UPO in the attractor loses its
transverse stability and the attractor undergoes a bubbling
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bifurcation [16,17]. Then any network with rb < j�maxj<
r0 will exhibit bubbling in the presence of small noise (or
parameter mismatch), while any network with j�maxj< rb
will show stable synchronization, even in the presence of
small noise. For large noise strength, the linear theory
cannot make predictions.

Example.—As an example we consider a network of
optically coupled semiconductor lasers modeled by dimen-
sionless equations of the Lang-Kobayashi [18] type:

_E lðtÞ ¼ 1

2
ð1þ i
ÞnlðtÞElðtÞ þ XN

j¼1

gljE
jðt� �Þ;

T _nlðtÞ ¼ p� nlðtÞ � ½1þ nlðtÞ�jElðtÞj2;
(8)

where El and nl are the complex electric field amplitude
and the inversion of the lth laser, respectively. For our
example, we choose the parameters as follows: ratio
between carrier and photon lifetime T ¼ 200, injection
current p ¼ 10, and 
 factor 
 ¼ 4. This results in a
relaxation oscillation period TRO � 28. Figure 1(b) shows
the �max ¼ 0 contour line of the corresponding MSF for
networks with � ¼ 0:4 for different values of the delay
time �. For � ¼ 20 (order of TRO) the contour line starts to
become circular. For � * 3TRO the shape of the MSF
perfectly resembles our predictions. In this case we find
r0 <� ¼ 0:4; i.e., the dynamics is chaotic. For � ¼ 1 and
10 the limit of large delay is not satisfied; hence, the MSF
does not exhibit the rotation symmetry. Note that for these
values of the delay time the dynamics is a PO, and since the
system is a flow, the stability boundary reaches its maxi-
mum real value at reic ¼ j�j.

Conclusion.—We have shown that the MSF has a simple
universal structure in the limit of large delay: It is rotation-
ally symmetric around the origin and either positive and
constant (if it is positive at the origin) or monotonically
increasing and becoming positive at a critical radius r0.
This structure allows us to confirm a recent conjecture [10]
about synchronizability of chaotic elements. Furthermore,
we classify networks into three types depending on the
magnitude of the maximum transversal eigenvalue of the
coupling matrix in relation to the magnitude of the row
sum. Importantly, this classification allows us to predict the
synchronizability of general networks of identical units
with strongly delayed connections based solely on the
modulus of the eigenvalues and the type of synchronized
dynamics. In many cases this prediction is possible even
without computing the critical radius r0 (as shown in
Table I). Although our results describe the properties of
coupled systems in the limit of large delay, practically they
are expected to hold when the delay is 2 or 3 times larger

than the characteristic time scale of the underlying system
without delay. This is confirmed by our example as well as
the results of Ref. [11].
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[13] P. Cvitanović, Physica (Amsterdam) 83D, 109 (1995).
[14] Y. Nagai and Y. C. Lai, Phys. Rev. E 56, 4031 (1997).
[15] D. Hunt, G. Korniss, and B.K. Szymanski, Phys. Rev.

Lett. 105, 068701 (2010).
[16] E. Ott and J. C. Sommerer, Phys. Lett. A 188, 39 (1994).
[17] P. Ashwin et al., Nonlinearity 9, 703 (1996).
[18] R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16,

347 (1980).

TABLE I. Stability of synchronized solutions for the three types of networks.

Chaotic dynamics in the SM (r0 < j�j) PO or FP in the SM (j�j< r0)

(a) j�maxj< j�j Synchr. stable if j�maxj< r0 Synchr. stable

(b) j�maxj ¼ j�j Synchr. unstable Synchr. stable

(c) j�maxj> j�j Synchr. unstable Synchr. stable if j�maxj< r0

PRL 105, 254101 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

17 DECEMBER 2010

254101-4

http://dx.doi.org/10.1103/PhysRevLett.71.65
http://dx.doi.org/10.1103/PhysRevLett.71.65
http://dx.doi.org/10.1016/S0370-1573(02)00137-0
http://dx.doi.org/10.1103/PhysRevLett.101.084102
http://dx.doi.org/10.1103/PhysRevLett.101.084102
http://dx.doi.org/10.1016/S0896-6273(00)80821-1
http://dx.doi.org/10.1103/PhysRevLett.81.3291
http://dx.doi.org/10.1103/PhysRevLett.94.163901
http://dx.doi.org/10.1137/050647918
http://dx.doi.org/10.1137/040619958
http://dx.doi.org/10.1103/PhysRevLett.97.123902
http://dx.doi.org/10.1063/1.2953582
http://dx.doi.org/10.1103/PhysRevE.71.061904
http://dx.doi.org/10.1103/PhysRevE.78.041907
http://dx.doi.org/10.1103/PhysRevE.78.041907
http://dx.doi.org/10.1103/PhysRevLett.87.078102
http://dx.doi.org/10.1103/PhysRevLett.80.2109
http://dx.doi.org/10.1103/PhysRevLett.80.2109
http://dx.doi.org/10.1103/PhysRevLett.92.074104
http://dx.doi.org/10.1103/PhysRevLett.92.074104
http://dx.doi.org/10.1103/PhysRevE.81.025205
http://dx.doi.org/10.1103/PhysRevE.81.025205
http://dx.doi.org/10.1103/PhysRevE.79.056207
http://dx.doi.org/10.1016/0167-2789(82)90042-2
http://dx.doi.org/10.1103/PhysRevLett.76.2686
http://dx.doi.org/10.1016/S0167-2789(97)00185-1
http://dx.doi.org/10.1016/S0167-2789(97)00185-1
http://dx.doi.org/10.1103/PhysRevLett.96.220201
http://dx.doi.org/10.1103/PhysRevLett.96.220201
http://dx.doi.org/10.1103/PhysRevE.74.026201
http://dx.doi.org/10.1103/PhysRevE.74.026201
http://dx.doi.org/10.1103/PhysRevE.79.046221
http://dx.doi.org/10.1103/PhysRevE.79.046221
http://dx.doi.org/10.1103/PhysRevA.37.1711
http://dx.doi.org/10.1103/PhysRevA.37.1711
http://dx.doi.org/10.1103/PhysRevLett.79.649
http://dx.doi.org/10.1103/PhysRevLett.79.649
http://dx.doi.org/10.1016/0167-2789(94)00256-P
http://dx.doi.org/10.1103/PhysRevE.56.4031
http://dx.doi.org/10.1103/PhysRevLett.105.068701
http://dx.doi.org/10.1103/PhysRevLett.105.068701
http://dx.doi.org/10.1016/0375-9601(94)90114-7
http://dx.doi.org/10.1088/0951-7715/9/3/006
http://dx.doi.org/10.1109/JQE.1980.1070479
http://dx.doi.org/10.1109/JQE.1980.1070479

