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We present an extensive study of nuclear matrix elements (NME) for the neutrinoless double-beta decay

of the nuclei 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 124Sn, 128Te, 130Te, 136Xe, and 150Nd based on state-of-

the-art energy density functional methods using the Gogny D1S functional. Beyond-mean-field effects are

included within the generating coordinate method with particle number and angular momentum projection

for both initial and final ground states. We obtain a rather constant value for the NMEs around 4.7 with the

exception of 48Ca and 150Nd, where smaller values are found. We analyze the role of deformation and

pairing in the evaluation of the NME and present detailed results for the decay of 150Nd.
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Double-beta decay is an extremely rare process where an
even-even nucleus decays into the even-even neighbor by-
passing the energetically forbidden odd-odd intermediate
isobar. Along the nuclear chart, there are only few candi-
dates, all found in the valley of stability [1]. The double-beta
decay where two electrons and two neutrinos are emitted in
the final state (2���) has been observed experimentally in
several isotopes with half-lives �1019–21 yr. This process
conserves the leptonic number and is compatible with
Majorana or Dirac neutrinos. There is also a second mode
without neutrino emission (0���) that is possible only if
the neutrinos are massive Majorana particles and is related
to the absolute mass scale of these elementary particles [1].
Other than one controversial claim [2], 0��� decay has not
been detected and is currently the main goal of several
projects worldwide [3]. The half-life of this process between
0þ states for mother and granddaughter nuclei can be writ-
ten as [1]

½T0�
1=2ð0þ ! 0þÞ��1 ¼ G01jM0�j2

�hm��i
me

�
2
; (1)

where hm��i is the effective Majorana neutrino mass, me is

the electron mass, G01 is a kinematical phase space factor,
and, finally, M0� is the nuclear matrix element (NME).
Equation (1) shows that a precise determination of the
effective neutrino mass requires, apart from the experimen-
tal measurement of the 0��� half-life, a reliable calculation
of the NME. Thus far, several nuclear structure methods
have been employed. The most used among them are the
interacting shell model (ISM) [4,5], proton-neutron quasir-
andom phase approximation (QRPA) [6–9], and, more re-
cently, projected Hartree-Fock-Bogoliubov (PHFB) in
limited configuration spaces and using schematic pairing
plus quadrupole interactions [10,11] and interacting boson
model (IBM) [12].

In this Letter, we present major improvements with
respect to previous PHFB calculations [10,11]: we use

state-of-the-art density functional methods based on the
well-established Gogny D1S functional [13] and a much
larger single particle basis (11 major oscillator shells); we
perform particle number and angular momentum projec-
tion (PNAMP) for both mother and granddaughter nuclei;
and include configuration mixing within the generating
coordinate method (GCM) framework [14,15]. All these
developments have been shown to be necessary for a
unified description of nuclear structure [14]. In particular,
particle number projection before variation is fundamental
for a correct treatment of pairing correlations [15] that play
a very important role in 0��� decay [4].
The 0��� NME can be separated into three terms:

Fermi (F), Gamow-Teller (GT), and tensor (T) [1]:

M0� ¼ �
�
gV
gA

�
2
M0�

F þM0�
GT �M0�

T ; (2)

with gV ¼ 1 and gA ¼ 1:25. The tensor term is small
according to the ISM and QRPA calculations [5,8] and
will be neglected in this work. We use the closure approxi-
mation [1] to sum over intermediate states in the odd-odd
nucleus as currently it is not possible to compute odd-odd
nuclei using beyond-mean-field methods: symmetry resto-
ration methods including blocking effects have not been
fully developed so far. Therefore, a calculation of the
2��� mode cannot be performed as the closure approxi-
mation is not valid in this process. The different terms in
Eq. (2) can be expressed as the expectation value of a two-
body operator between the initial and final states; i.e.,

M0�
F=GT ¼ h0þf jM̂0���

F=GTj0þi i. Detailed expressions for M̂0���
F=GT

can be found in Ref. [5]. We have included high order
currents [6], nucleon finite size corrections [6], and radial
short-range correlations treated within the unitary correlator
method (UCOM) [8,16]. In the GCMþ PNAMP approach
(GCM from now on), the initial (i) and final (f) many-body
wave functions are found as linear combinations of particle
number N, Z, and angular momentum I ¼ 0 projected

PRL 105, 252503 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

17 DECEMBER 2010

0031-9007=10=105(25)=252503(4) 252503-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.252503


wave functions with different intrinsic quadrupole deforma-
tions �:

j0þi ¼ X
�

g�P
I¼0PNPZj��i; (3)

where PI¼0, PN , PZ are the corresponding angular momen-
tum (I ¼ 0) and particle number projectors [17]. The intrin-
sic axial symmetric Hartree-Fock-Bogoliubov wave
functions j��i are solutions to the variation after particle

number projection equations constrained to a given value of
the axial quadrupole deformation, � [15,18]. Therefore,
intrinsic deformation of the system is naturally included in
the formalism and pairing correlations properly taken into
account. Finally, the coefficients g� are found by solving the

Hill-Wheeler-Griffin equation [17,19]. First, for each nu-
cleus we transform the nonorthogonal set of wave functions
fPI¼0PNPZj��ig into an orthonormal one fj�i ¼P

�ðu�;�=
ffiffiffiffiffiffi
n�

p ÞPI¼0PNPZj��ig by diagonalizing the norm
overlap matrix,

P
�0 h��jPI¼0PNPZj��0 iu�;�0 ¼ n�u�;�.

In this basis, the Hill-Wheeler-Griffin equation reads:P
�0"��0Ga

�0 ¼ EaGa
�, where "��0 are the so-called energy

kernel [15,19]. Finally, the coefficients for the lowest eigen-
value are used to compute both the so-called collective wave
functions Fð�Þ ¼ P

�G
0
�u�;�—probability distribution for

the state to have a given deformation—and the NME:

M0�
F=GT ¼ X

�i�f

X
�i�f

�u��f;�fffiffiffiffiffiffiffiffi
n�f

p
�
G0�

�f
h��f

� jPNfPZfM̂0�
F=GTP

I¼0PNiPZi j��i
iG0

�i

�
u�i;�iffiffiffiffiffiffiffi
n�i

p
�
:

(4)

Particle number conservation together with using large and
identical configuration spaces for protons and neutrons guar-
antees that Ikeda’s sum rule is fulfilled. Additionally, to our
knowledge, this is the first implementation of the GCM
method for calculating transitions between different nuclei
including particle number symmetry restoration in both the
initial and final states.

We now present our results for the 0��� NME, discus-
sing in detail the decay of 150Nd. To check the reliability of
the method for describing properties of the initial and final
nuclei, we show in Fig. 1 a comparison between the
experimental and theoretical ground state bands for
150Nd and 150Sm. We observe a rather good agreement
for both excitation energies and BðE2Þ transition probabil-
ities, with the theoretical results predicting a slightly larger
rotational (collective) character than the experiment. The
computed double-beta decay Q value is 2.99 MeV while
the experimental value is 3.37 MeV. The inset of Fig. 1
shows the probability distribution for the mother
and granddaughter 0þ1 states to have a given intrinsic
quadrupole deformation �. Both 150Nd and 150Sm have
well deformed prolate ground states with � � þ0:40 and
� � þ0:25, respectively. These values are compatible

with the rotational bands shown in the figure.
Equation (4), shows that the 0��� NME can be expressed
as a sum of matrix elements between states of different
intrinsic quadrupole deformation for the initial and final
nuclei. Consequently, the matrix element

h��f
jPNfPZfM̂0���

F=GTP
I¼0PNiPZi j��i

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h��f

jPNfPZfPI¼0j��f
ih��i

jPNiPZiPI¼0j��i
i

q

provides explicitly the strength of the 0��� operators as a
function of the deformation of the nuclei involved in the
decay. In Fig. 2(a) we show these matrix elements for the
GT component (the Fermi part gives a similar pattern and it
is not shown). The strength is concentrated rather symmet-
rically in the diagonal part of the figure, implying that the
decay between states with different initial and final defor-
mation is hindered. Moreover, spherical configurations are
the most preferred to decay. Nevertheless, Fig. 2(a) also
shows an interval of deformation close to the spherical
configuration where non-negligible off-diagonal matrix
elements (greater that 0.5) are obtained (� 2
½�0:2;þ0:2�). The absolute maximum is found at
(þ 0:03; 0) with additional local maxima, for example, at
(þ 0:52;þ0:52). These results are in agreement with ISM
and PHFB calculations that have shown a significant de-
crease of the NME with increasing difference in quadru-
pole deformation between initial and final states [10,20].
This trend has also been observed in 2��� QRPA calcu-
lations [21]. The final value of the NME is determined by
weighting the strength of the transition operator with the
wave functions of the initial and final states which selects
the relevant region of deformation. This area is marked by
a shaded circle in Fig. 2(a) showing that in this case both
the difference in deformation and the absence of shape
mixing inhibit the transition. The final result for the
NME is M0� ¼ 1:71 with 1.28 and 0.43 coming from
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FIG. 1 (color online). Comparison between theoretical and
experimental ground state bands for 150Nd and 150Sm.
Inset: Collective wave functions of the ground states as a
function of the intrinsic deformation. The values for 150Sm
have been shifted up by 0.05.
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Gamow-Teller and Fermi components, respectively. In
order to shed additional light on the structure of the
strength, we show in Fig. 2(b) the pairing energy �Epp

of the nuclei involved in the decay. This energy is defined
as the pairing tensor part [14,17] within the PNAMP
approach. We find a strong correlation between the struc-
ture of the NME and�Epp, both having maxima at similar

values of the deformation for mother and granddaughter
nuclei. This result is also in agreement with ISM and
QRPA calculations where the largest values for the NME
are obtained with well paired wave functions with large
zero seniority components in the spherical basis [4,7].

We now present the values of the NME [Eq. (4)] com-
puted for several double-beta emitters and compare with
the ones calculated with other methods that use similar
assumptions concerning the neutrino potentials. In Fig. 3
we observe that the NMEs are rather constant around an
averaged value of 4.7 for the decay of 76Ge, 82Se, 96Zr,
100Mo, 116Cd, 124Sn, 128Te, 130Te, and 136Xe, being 96Zr the
one with the largest value. In these nuclei, the differences
in deformation between the initial and final states are not
very significant and also the structure and absolute values
of the transition strength are quite similar. There are two
exceptions to this general trend, namely, 48Ca and 150Nd,

where the NME is significantly smaller. In the latter,
the difference between deformation of the mother and
granddaughter is remarkable (inset Fig. 1), and this is
precisely the main source of suppression of the NME. On
the other hand, due to the double magic character of 48Ca,
this nucleus has the smallest value for the pairing energy
and transition strength among the nuclei studied in this
work. Concerning the NME’s obtained by other methods,
we attribute first the small NMEs obtained by PHFB to the
reduced configuration space used and the lack of particle
number restoration and shape mixing in those calculations.
We also show that the lowest NMEs are obtained within the
ISM, a rather constant value around 2.5 except for 48Ca.
We expect that enlarging the model space used in the ISM
calculations will enhance the values of their NMEs
[4,9,22]. Considering higher seniority components in our
method by including quasiparticle excitations in the intrin-
sic wave functions may reduce our values slightly. Some
differences are also found between the GCM and QRPA
values. The main differences between these approaches are
the assumption of spherical symmetry in QRPA, the ab-
sence of quasiparticle excitations in the GCM approach,
and the much larger—and no core—single particle basis
used in GCM. Furthermore, neither triaxial, mirror, nor
time reversal symmetry breaking effects are included in
our GCM calculations because they are beyond current
computational capabilities. We expect that the inclusion
of these degrees of freedom will not significantly change
the structure of the ground states as the nuclei studied here
are either spherical or well deformed. To validate our
approach we have computed the total GT strengths Sþð�Þ
for the decay of granddaughter (mother) nuclei defined, for
example, in Ref. [23]. In Table I, we compare the calculated
Sþð�Þ with the experimental values measured in charge

exchange reactions. As in QRPA and ISM calculations, a
quenching factor of ð0:74Þ2 has been introduced [21,23].
Finally, we evaluate the half-life of each nuclei based on the
NMEcalculated with theGCMmethod. In Table I, we show
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daughter nuclei. Shaded area corresponds to the maximum
probability for finding the mother and granddaughter states.
(b) Pairing energies as a function of the intrinsic deformation.
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the difference between the calculated and experimental Q
values andwe observe an excellent agreement inmost of the
cases except for 96Zr and 100Mo, where an overbinding of
96Mo and 100Ru isotopes gives such differences. These are
precisely the decays with largest NME and smallest half-
lives predicted by our calculations.

In summary, we have presented the first calculations of
0��� decaywithin the energy density functional framework
including beyond-mean-field effects. We have analyzed the
role of the intrinsic quadrupole deformation and pairing
content of the nuclei involved in this process. Decays be-
tween spherical initial and final shapes are found to be
favored while large differences in deformation significantly
hinder the transition probability. Our calculations constitute
the first consistent evaluation of the 0��� decay of 150Nd.
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