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1Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
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We determine the valence parton distribution function of the pion by performing a new analysis of data

for the Drell-Yan process ��N ! �þ��X. Compared to previous analyses, we include next-to-leading-

logarithmic threshold resummation effects in the calculation of the Drell-Yan cross section. As a result of

these, we find a considerably softer valence distribution at high momentum fractions x than obtained in

previous next-to-leading-order analyses, in line with expectations based on perturbative-QCD counting

rules or Dyson-Schwinger equations.
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Although the pion is one of the most important particles
in strong-interaction physics, our knowledge about its in-
ternal quark and gluon ‘‘partonic’’ structure is still rather
poor. Most of the available information comes from Drell-
Yan dimuon production by charged pions incident on nu-
clear fixed targets [1–3]. These data primarily constrain the

valence distribution v� � u�
þ

v ¼ �d�
þ

v ¼ d�
�

v ¼ �u�
�

v . Sev-
eral next-to-leading-order (NLO) analyses of the Drell-Yan
data have been performed [4–6]. A striking feature has
been that the resulting valence distribution v�ðx;Q2Þ
turned out to be rather hard at high momentum fraction x,
typically showing only a linear ð1� xÞ1 or slightly faster
falloff. This finding is at variance with predictions based on
perturbative QCD [7] and calculations using Dyson-
Schwinger equations [8], for which the falloff is expected
to be �ð1� xÞ2. On the other hand, Nambu-Jona-Lasinio
[9] and constituent quark models [10], as well as duality
arguments [11], favor a linear behavior. The high-x behav-
ior of v� is widely regarded to be an important so-far-
unresolved problem in strong-interaction physics [12].

In the kinematic regimes accessed by the fixed-target
Drell-Yan data, perturbative corrections beyond NLO may
be significant [13]. The relation z ¼ Q2=x1x2S ¼ 1 sets a

threshold for the partonic reaction, whereQ and
ffiffiffi
S

p
denote

the invariant mass of the lepton pair and the overall had-
ronic center-of-mass (c.m.) energy, respectively, and x1
and x2 are the momentum fractions of the partons partic-
ipating in the hard-scattering reaction. As z increases
toward unity, little phase space for real-gluon radiation
remains, since most of the initial partonic energy is used
to produce the virtual photon. The infrared cancellations
between virtual and real-emission diagrams then leave
behind large logarithmic higher-order corrections to the
cross sections, the so-called threshold logarithms. These
logarithms become particularly important in the fixed-
target regime, because here the ratio Q2=S is relatively
large. It then becomes necessary to resum the large
corrections to all orders in the strong coupling, a tech-
nique known as threshold resummation. QCD threshold

resummation for the Drell-Yan process has been derived a
long time ago [14]. It turns out that the threshold loga-
rithms lead to a strong increase of the cross section near
threshold. Therefore, if threshold resummation effects are
included, it is possible that a much softer valence distribu-
tion of the pion is sufficient to describe the experimental
data. Indeed, as was observed in Ref. [6], the extracted v�

already becomes softer when going from the lowest order
to NLO, where the threshold logarithms first appear. In this
Letter, we will address the impact of resummation effects
on the pion’s valence distribution. We will find that indeed
a falloff v� � ð1� xÞ2 even at a relatively low resolution
scale is well consistent with the Drell-Yan data. We note
that the effects of resummation on parton distributions
were also examined in the context of deep-inelastic lepton
scattering [15].
We consider the inclusive cross section for the produc-

tion of a �þ�� pair of invariant mass Q and rapidity � in
the process ��ðP1ÞAðP2Þ ! �þ��X, where A denotes a
nucleon or nuclear target and P1 and P2 are the four-
momenta of the initial-state particles. According to the
factorization theorem, the cross section is written as

d�

dQ2d�
¼ �0

X
a;b

Z 1

x0
1

dx1
x1

Z 1

x0
2

dx2
x2

f�a ðx1; �2ÞfAb ðx2; �2Þ

�!abðx1; x01; x2; x02; Q=�Þ; (1)

where �0 ¼ 4��2=9Q2S, with S ¼ ðP1 þ P2Þ2, and
where

x01;2 ¼
ffiffiffi
�

p
e�� (2)

with � ¼ Q2=S. At lowest order, one has x1;2 ¼ x01;2. The

sum in Eq. (1) runs over all partonic channels, with f�a and
fAb the corresponding parton distribution functions of the

pion and the nucleus and !ab the hard-scattering function.
The latter can be computed in perturbation theory as a
series in the strong coupling constant �s, starting from the
lowest-order process q �q ! �� ! �þ��. The functions in
(1) depend on the factorization and renormalization scales,
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which we choose to be equal here and collectively denote
as �.

As discussed above, our goal is to resum large logarith-
mic contributions to !q �q that arise near partonic threshold

z ¼ 1, where z ¼ Q2=ŝ ¼ �=x1x2, with
ffiffiffî
s

p
the partonic

c.m. energy. Resummation may be achieved in Mellin
moment space, where phase space integrals for multiple-
soft-gluon emission decouple. For the rapidity-dependent
cross section, it is convenient to also apply a Fourier trans-
form in � [16,17]. Under combined Fourier and Mellin
transforms of the cross section,

�ðN;MÞ �
Z 1

0
d��N�1

Z lnð1= ffiffi
�

p Þ

� lnð1= ffiffi
�

p Þ
d�eiM� d�

dQ2d�
; (3)

the convolution integrals in (1) decouple into ordinary
products [16,17]. Defining the moments of the parton
distribution functions,

fNð�2Þ �
Z 1

0
dxxN�1fðx;�2Þ; (4)

and introducing the corresponding double transform of the
partonic hard-scattering cross sections,

~!abðN;MÞ �
Z 1

0
dzzN�1

Z lnð1= ffiffi
z

p Þ

� lnð1= ffiffi
z

p Þ
d�̂eiM�̂!ab; (5)

where �̂ ¼ �� 1
2 lnðx1=x2Þ is the partonic c.m. rapidity,

one finds

�ðN;MÞ ¼ �0

X
a;b

f�;NþiðM=2Þ
a fA;N�iðM=2Þ

b ~!abðN;MÞ: (6)

As was discussed in Refs. [17–19], in the near-threshold
limit z ! 1 or N ! 1, the dependence of ~!ab¼q �qðN;MÞ
on M becomes subleading and may be neglected. The
resummed expression for ~!q �qðN;MÞ then becomes identi-

cal to that for the total (rapidity-integrated) Drell-Yan cross

section and is given in the MS scheme by

ln ~!q �q ¼ Cq

�
Q2

�2
; �sð�2Þ

�
þ 2

Z 1

0
d�

�N�1 � 1

1� �

�
Z ð1��Þ2Q2

�2

dk2?
k2?

Aqð�sðk?ÞÞ; (7)

where Aqð�sÞ is a perturbative function, whose first two

orders are sufficient for resummation to next-to-leading-
logarithmic (NLL) order [14]:

Aqð�sÞ ¼ �s

�
Að1Þ
q þ

�
�s

�

�
2
Að2Þ
q þ � � � ; (8)

with [20]

Að1Þ
q ¼CF; Að2Þ

q ¼1

2
CF

�
CA

�
67

18
��2

6

�
�5

9
Nf

�
: (9)

Here CF ¼ 4=3 and CA ¼ 3. The first term in Eq. (7) does
not originate from soft-gluon emission but instead mostly

contains hard virtual corrections. It is also a perturbative
series in �s, and we need only its first-order term:

Cq ¼ �s

�
CF

�
�4þ 2�2

3
þ 3

2
ln
Q2

�2

�
þOð�2

sÞ; (10)

whose exponentiated form is given in Ref. [21]. As was
shown in Ref. [17], rapidity dependence is slightly more
faithfully reproduced if one shifts the Mellin moments to
N � iM=2 in ~!q �q, which is a choice that we also adopt

here.
At NLL order, the expression in Eq. (7) becomes [22]

ln ~!q �q ¼ Cq þ 2hð1Þð	Þ ln �N þ 2hð2Þ
�
	;

Q2

�2

�
; (11)

where �N ¼ Ne�E with the Euler constant �E and

	 ¼ b0�sð�2Þ ln �N: (12)

The functions hð1Þ and hð2Þ collect all leading-logarithmic
and NLL terms in the exponent, which are of the form
�k
s ln

kþ1 �N and �k
s ln

k �N, respectively. They read

hð1Þð	Þ ¼ Að1Þ
q

2�b0	
½2	þ ð1� 2	Þ lnð1� 2	Þ�;

hð2Þð	Þ ¼ ð�Að1Þ
q b1 � b0A

ð2Þ
q Þ 2	þ lnð1� 2	Þ

2�2b30

þ Að1Þ
q b1
4�b30

ln2ð1� 2	Þ þ Að1Þ
q

2�b0
lnð1� 2	Þ lnQ

2

�2
;

(13)

where

b0 ¼ 1

12�
ð11CA � 2NfÞ; (14)

b1 ¼ 1

24�2
ð17C2

A � 5CANf � 3CFNfÞ: (15)

The resummed hadronic rapidity-dependent cross sec-
tion is obtained by taking the inverse Mellin and Fourier
transforms of Eq. (6):

d�

dQ2d�
¼

Z 1

�1
dM

2�
e�iM�

Z Cþi1

C�i1
dN

2�i
��N�ðN;MÞ:

(16)

When performing the inverse Mellin transform, the pa-
rameter C usually has to be chosen in such a way that all
singularities of the integrand lie to the left of the integra-
tion contour. The resummed cross section has a Landau
singularity at 	 ¼ 1=2 or �N ¼ expð1=2�sb0Þ, as a result of
the divergence of the running coupling �s in (7) for k? !
�QCD. In the Mellin inversion, we adopt the minimal

prescription developed in Ref. [22] to deal with the
Landau pole, for which the contour is chosen to lie to the
left of the Landau singularity. An alternative possibility is
to perform the resummation directly in z space [23].
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We match the resummed cross section to the NLO one by
subtracting the Oð�sÞ expansion of the resummed expres-
sion and adding the full NLO cross section [17].

The fixed-target pion Drell-Yan data [1,2] are in a kine-
matic regime where the partons’ momentum fractions are
relatively large (x * 0:3), and hence the valence quark
contributions strongly dominate. We can therefore only

hope to determine the pion’s valence distribution v� �
u�

þ
v ¼ �d�

þ
v ¼ d�

�
v ¼ �u�

�
v . Following the NLO Glück-

Reya-Schienbein (GRS) analysis [5], we choose the initial
scale Q0 ¼ 0:63 GeV for the evolution and parameterize
the valence distribution function as

xv�ðx;Q2
0Þ ¼ Nvx

�ð1� xÞ
ð1þ �x�Þ; (17)

subject to the constraint
R
1
0 v

�ðx;Q2
0Þdx ¼ 1. Since there is

no sensitivity to the sea quark and gluon distributions, we
adopt them from the GRS analysis, except that we modify
the overall normalization of the sea quark distribution so
that the momentum sum rule

P
i¼q; �qg

R
1
0 dxxfiðxÞ ¼ 1 is

maintained when we determine the valence distribution.
All distributions are then evolved at NLO to the relevant
factorization scale � ¼ Q.

The free parameters in Eq. (17) are determined by a fit to
the pion Drell-Yan data from the Fermilab E615 experi-
ment [1], applying threshold resummation as detailed in
the previous section. The E615 data were obtained by using
a 252 GeV �� beam on a tungsten target. We take into
account the nuclear effects in this heavy target by using
the nuclear parton distribution functions from Ref. [24].
We use data points with lepton pair mass 4:03 GeV 	 Q 	
8:53 GeV (between the J=� and � resonances) and
0< xF < 0:8. Here, xF is the Feynman variable. In the
near-threshold region, which is addressed by threshold
resummation, we can use lowest-order kinematics to de-
termine the relation between xF and the rapidity �:

xF ¼ x01 � x02 ¼
ffiffiffi
�

p
sinhð�Þ: (18)

Since the E615 data have a nominal overall systematic
error of 16%, we introduce a normalization factor K that
multiplies the theoretical cross section. We find that the
parameter � in (17) is not well-determined, and we hence
fix it to � ¼ 2, a value roughly preferred by the fit. In order
to obtain a better picture of the physical content of our
determined pion valence distribution, we perform fits for
several different values of its total momentum fraction
hxv�i ¼ R

1
0 xv

�ðx;Q2
0Þ. Fixing hxv�imakes one parameter

in Eq. (17) redundant, which we choose to be �. We hence

fit the remaining three free parameters �, 
, and K to the
70 data points by using a �2 minimization procedure.
The results are shown in Table I, for four different values

of the total valence quark momentum fraction 2hxv�i. One
observes that fit 3 for which the valence carries 65% of the
pion’s momentum is preferred, with slightly higher or
lower values also well acceptable. Most importantly,
all fits show a clear preference for a falloff much softer
than linear, with fits 2, 3, and 4 having a value of 
 very
close to 2. This is the central result of our work. The
valence distribution xv� for our best fit 3 is shown in
Fig. 1, evolved to Q ¼ 4 GeV. At this scale it behaves as
ð1� xÞ2:34. Valence distributions obtained from previous
NLO analyses [4,5], which have a roughly linear behavior
at high x, and from calculations using Dyson-Schwinger
equations [8], for which v� � ð1� xÞ2:4, are also shown.
We note that for all our fits the factors K lie well within the
normalization uncertainty of the data.
In Fig. 2, we compare the resummed Drell-Yan cross

section obtained for fit 3 to some of the E615 data. We have
chosen the factorization and renormalization scale� ¼ Q.
As one can see from the figure and from Table I, the data
are very well described. This also holds true for the CERN
NA10 [2] Drell-Yan data, which were not included in our
fit and to which we compare in Fig. 3. We also show
the results obtained for our fit 3 when using only NLO
(i.e., unresummed) partonic cross sections in the calcula-
tion. As seen in Fig. 2, these fall off too rapidly at large xF.

TABLE I. Results for our NLL threshold-resummed fits to the Fermilab E615 Drell-Yan
data [1].

Fit 2hxv�i � 
 � K �2 (no. of points)

1 0.55 0:15� 0:04 1:75� 0:04 89.4 0:999� 0:011 82.8 (70)

2 0.60 0:44� 0:07 1:93� 0:03 25.5 0:968� 0:011 80.9 (70)

3 0.65 0:70� 0:07 2:03� 0:06 13.8 0:919� 0:009 80.1 (70)

4 0.7 1:06� 0:05 2:12� 0:06 6.7 0:868� 0:009 81.0 (70)

FIG. 1 (color online). The pionic valence (v�) distribution
obtained from our fit 3 to the E615 Drell-Yan data at Q ¼
4 GeV, compared to the NLO parameterizations of [4] Sutton-
Martin-Roberts-Stirling (SMRS) and [5] (GRS) and to the dis-
tribution obtained from Dyson-Schwinger equations [8].
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The inset in Fig. 2 shows the variation of our NLO
and resummed cross sections with �, in terms of the
quantity �� � ½�ð�0Þ � �ð� ¼ QÞ�=�ð� ¼ QÞ, with

�0 ¼Q=2;2Q. As one can see, the scale uncertainty is
significantly reduced after resummation and becomes
smaller than the experimental uncertainties, in particular,
in the region of high xF. This implies that our findings for
the pion’s valence distribution are stable with respect to the
main theoretical uncertainty in the calculation.

In conclusion, we have determined a new valence parton
distribution function for the pion by reanalyzing pion-
nucleon Drell-Yan data including threshold-resummed

contributions to the cross section. The obtained valence
distribution is much softer in the high-x regime than that
found in an NLO analysis, behaving roughly as ð1�xÞ2, in
agreement with predictions from perturbative QCD and
nonperturbative Dyson-Schwinger equation approaches.
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