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We consider the question of thermalization for isolated quantum systems after a sudden parameter

change, a so-called quantum quench. In particular, we investigate the prerequisites for thermalization,

focusing on the statistical properties of the time-averaged density matrix and of the expectation values of

observables in the final eigenstates. We find that eigenstates, which are rare compared to the typical ones

sampled by the microcanonical distribution, are responsible for the absence of thermalization of some

infinite integrable models and play an important role for some nonintegrable systems of finite size, such as

the Bose-Hubbard model. We stress the importance of finite size effects for the thermalization of isolated

quantum systems and discuss two scenarios for thermalization.
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The microscopic description of many-particle systems is
very involved. In many situations, in particular, at equilib-
rium, one can rely on statistical ensembles that provide a
framework to compute time-averaged observables and
obtain general results like fluctuation-dissipation relations.
The use of statistical ensembles relies on the hypothesis
that on long time scales physical systems thermalize. In
classical statistical physics, a very good understanding of
thermalization was reached in the last century [1]: Under
certain chaoticity conditions, an isolated system thermal-
izes at long times within the microcanonical ensemble.
Furthermore, a large single portion of a (much larger)
isolated system thermalizes within the grand-canonical
ensemble. Instead for quantum systems, it is fair to state
that the comprehension of thermalization and its prereq-
uisites are still open problems [2,3], except for important
results obtained in the semiclassical limit [4,5] or for the
coupling to a thermal bath [6,7]. This is the case despite
a lot of effort especially in the mathematical physics
literature starting from the quantum ergodic theorem of
von Neumann [8] (see [3] for very recent results).

The interest in these fundamental questions has revived
recently due to their direct relevance for experiments in
ultracold atomic gases [9]. The almost perfect decoupling
of these gases from their environment enables the inves-
tigation of the quantum dynamics of isolated systems. In a
fascinating experiment [10], it was observed that two
counteroscillating clouds of bosonic atoms confined in a
one-dimensional harmonic trap relax to a state different
from the thermal one. Up to now, the absence of thermal-
ization [11] has been mainly attributed to the presence of
infinitely many conserved quantities, i.e., to the integra-
bility of the system (see [12] and references therein).
For nonintegrable isolated models, the presence of ther-
malization after a global quench, i.e., a sudden global
parameter change, is still debated [13–19]. The origin of

thermalization (and its absence) after a global quench was
proposed to stem from statistical properties of the time-
averaged density matrix and the so-called ‘‘eigenstate-
thermalization hypothesis’’ (ETH) [4,19–21]. The ETH,
roughly speaking, says that all eigenstates with the same
intensive energies are thermal, meaning that expectation
values of all local observables within the eigenstate coin-
cide with the ones in the corresponding Gibbs ensemble.
The aim of our work is to understand to what extent the

ETH is a necessary and sufficient condition for thermal-
ization. The ETH can be interpreted in two different ways:
a weak one, which we show to be verified even for inte-
grable models and which states that the fraction of the
nonthermal states vanishes in the thermodynamic limit,
and a strong one, which states that nonthermal states
completely disappear in the thermodynamic limit. The
former interpretation does not imply thermalization. The
reason is the possible existence of rare nonthermal states
that can have a high overlap with the initial condition. We
shall show that this is the origin of nonthermalization of
some, and maybe all, integrable models and of some non-
integrable systems of finite size, such as the Bose-Hubbard
model. Our results reveal the crucial importance of finite
size effects in the study of thermalization and allow us to
point out two alternative routes for thermalization.
The initial condition for the dynamics at t ¼ 0 is given

by the density matrix �̂0. The time evolution of any observ-

able O can be expressed as hOiðtÞ¼P
�;��

0
��e

�itðE��E�Þ

h�jOj�i. Here j�i are the eigenvectors of the Hamiltonian
with corresponding eigenvaluesE� (we use @ ¼ 1). In order
to be concrete we will focus on a sudden parameter change
of the Hamiltonian at time t ¼ 0 for a system that is in the
ground state for t < 0. In this case, ��� ¼ c�c

�
�, where

c� ¼ h�jc 0i is the overlap between the eigenstate j�i of
the Hamiltonian after the quench and the ground state jc 0i
of the Hamiltonian before the quench (t ¼ 0�). Our results
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can be generalized straightforwardly to a general �0. The
typical time behavior of hOiðtÞ consists in damped or
overdamped oscillations that converge towards a constant
average value at long times. Assuming no degeneracy in
eigenenergies, the long-time value of hOiðtÞ can be
computed by using the time-averaged density matrix:
� ¼ P

�jc�j2j�ih�j [8,22]. Following Ref. [21] we call
‘‘diagonal ensemble averages’’ all averages with respect
to� andwe use hOiD ¼ Trð�OÞ ¼ P

�O�jc�j2withO� ¼
h�jOj�i. An important property of the diagonal ensemble is
that under very general conditions [21] the energy per
particle has vanishing fluctuations:

�e :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hE2iD � hEi2D

q

L
! 0 for L ! 1: (1)

HereL denotes the number of sites, and the thermodynamic
limit is taken at constant particle density N=L. Property (1)
means that the distribution of intensive eigenenergies with
weights jc�j2 is peaked for large sizes.

As already anticipated in the introduction, the
eigenstate-thermalization hypothesis says for generic non-
integrable interacting many-body systems that the matrix
elements O� of a few-body observable with respect to any
eigenstate j�i with eigenenergy E� equals the microca-
nonical ensemble average taken at that energy E�. This
was first conjectured based on studies of semiclassical
systems [4,20] and recently shown numerically to hold
for a specific nonintegrable system of finite size [21].
Were this hypothesis true, an immediate consequence of
property (1) would be that averages in the diagonal ensem-
bles coincide with averages in the microcanonical en-
semble at the same energy per particle. This was the
explanation of thermalization given for generic nonintegr-
able systems and demonstrated for a specific example [21].
In contrast, a finite width distribution for specific observ-
ables was found numerically for a finite size integrable
system and claimed to be at the origin of the absence of
thermalization for this model. Note, however, that for a
finite system there are always finite fluctuations of O�,
whether the system is integrable or not. It follows that a
precise characterization of the ETH has to involve state-
ments about the evolution of the distribution of O� upon
approaching the thermodynamic limit. Generically, the
width of the distribution of O� vanishes as

ð�OeÞ2 ¼
P
e
O2

�

P
e

�
0
@
P
e
O�

P
e

1
A

2

! 0 for L ! 1; (2)

whereO is an intensive local few-body Hermitian operator
(or observable); the sum

P
e is taken over eigenstates j�i

with eigenenergies E�=L 2 ½e� �; eþ ��, where e is the
considered energy per particle and � is a small number
that can be taken to zero after the thermodynamic limit.
Our proof (see Ref. [24]) is based on the vanishing of the
fluctuations in the microcanonical ensemble [25]. Note that

Eq. (2) implies that the fraction of states characterized by a
value of O� different from the microcanonical average
vanishes in the thermodynamic limit. However, states
with different values O� may and actually do exist, as
we shall show in the following. They are just rare com-
pared to the other ones. This is not a minor fact, since if the
jc�j2’s distribution gives an important weight to these rare
states, the diagonal ensemble averages will be different
from the microcanonical one. They keep a memory of the
initial state. As a consequence, an interpretation of the
ETH stating that the fraction of thermal states has to vanish
would not guarantee thermalization. Instead, the stronger
interpretation of the ETH, stating that the support of the
distribution of the O� shrinks around the thermal micro-
canonical value in the thermodynamic limit, does so be-
cause states leading to nonthermal averages disappear. In
the following, we shall show, in concrete examples, that
these rare states indeed do exist and prevent thermalization
in some integrable infinite systems and in some finite size
nonintegrable models, such as the Bose-Hubbard one.
Our first example is a chain of L harmonic oscillators

with a mass m and coupling strength ! described by H ¼
1
2

P
x½�2

x þm2�2
x þP

y¼�1!
2ð�xþy ��xÞ2�. We assume

periodic boundary conditions and the usual commutation
relations between the operators �x and �y given by

½�x;�y� ¼ i�x;y. One can rewrite the Hamiltonian as

H ¼ PðL�1Þ=2
k¼0 �kðRy

k Rk þ Iyk IkÞ with the new creation and

annihilation operators Rk, R
y
k and Ik, I

y
k and �2

k ¼ m2 þ
2!2½1� cosð2�k=LÞ�. As a consequence, the eigenstates
of the Hamiltonian at t ¼ 0þ are characterized by occupa-
tion numbers fnIkg and fnRk g for the I and R operators,

respectively. Following Calabrese and Cardy [12], we
consider now a quantum quench where the system is in
the ground state at a certain initial value of m ¼ mi that
we switch instantaneously to the final value mf, i.e.,

�i
k ! �f

k . We focus on the coupling between next-nearest

neighbor R oscillators which reads G2 ¼ 1
L

P
kgðkÞRy

k Rk

with gðkÞ ¼ cosð4�k=LÞ [26]. The diagonal matrix ele-
ment for a state � ¼ fnIk; nRk g is ðG2Þ� ¼ 1

L

P
kgðkÞnRk .

In the large system size limit, the number of eigenstates
with ðG2Þ� and E�=L, respectively, between G2 and G2 þ
dG2 and e and eþ de has the form of a large deviation
function; i.e., it is proportional to exp½LSeðG2Þ�dedG2

(cf. [24]). Physically, Se is just related to the entropy of
the system with intensive energy e and an average coupling
between next-nearest neighbors equal to G2. Thus the
distribution of G2 is strongly peaked around the maximum

of SeðG2Þ and has a width of the order 1=
ffiffiffiffi
L

p
, but its tails

extend to nonthermal values of G2. Therefore, this is in-
deed a case where the width of the distribution of the
matrix elements vanishes but the support does not due to
the existence of rare states. Additionally, all the weights
jc�j2 can be computed exactly [24]. Their typical value is
exponentially small in the size of the system. Thus they can
bias significantly the microcanonical ensemble distribution
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[27] by counterbalancing the difference in cardinality be-
tween rare and typical states. We find indeed that the
distributions of ðG2Þ� in the microcanonical and diagonal
ensembles become infinitely peaked but around two differ-
ent values, in agreement with Ref. [12], thus explaining the
absence of thermalization in this model [24].

The other example is the one-dimensional Bose-

Hubbard model with one particle per site: H ¼
�P

jJðbyj bjþ1 þ H:c:Þ þ U
2

P
jn̂jðn̂j � 1Þ, where byj and

bj are the bosonic creation and annihilation operators,

respectively, and n̂j ¼ byj bj the number operators on site j.

For most values of U and J, this model has been shown to
be nonintegrable [28]. Only in special points, e.g., (U ¼ 0)
and (J ¼ 0), is this model integrable. The first case we
consider is a quench from the superfluid state Ui=J ¼ 2
to Uf=J ¼ 10. For this quench a nonthermal steady state

has been found for long times [13,17]. The correlations

ðG1Þ� ¼ P
jh�jbyj bjþ1j�i=L in this nonthermal state (sys-

tem sizes up to L ¼ 100, solid horizontal line) do agree
well with their diagonal ensemble average (L ¼ 11,
dashed horizontal line) but not with the microcanonical
distribution (shaded region). In this nonintegrable situation
it is more difficult to disentangle the role of rare states and
finite size effects in the formation of a nonthermal state as
we show in the following. First, let us start to consider the
validity of Eq. (2). In Fig. 1 (upper-right panel), we show
the correlations ðG1Þ� versus energy E�=L. At low ener-
gies an (overlapping) band structure is seen. Within
these low energy bands ðG1Þ�’s decay almost linearly.
For intermediate energies a mixing of these energy bands

starts to show up (cf. Fig. 1, upper-right panel E�=L � 5)
which is weak for small systems and becomes stronger for
larger system sizes (cf. already L ¼ 11). In most fixed
energy intervals the values of the correlations ðG1Þ� are
spread considerably. In the upper-right panel the predicted
narrowing of the half-width of the distribution with in-
creasing system size is clearly visible. In contrast, the
support does not seem to shrink which might point towards
the existence of rare states. This is further supported in the
lower panel of Fig. 1, where the weight of the initial state
on the final eigenstates is strongly correlated with the
values of the ðG1Þ�. The weights are much larger for larger
values of ðG1Þ�, which correspond to the lower energy band
edges [17] and are larger than the microcanonical average
(shaded region in Fig. 1). A general decay of the weights
towards lower values of the correlations is evident. This
shows that the states which are important for the diagonal
ensemble average do not have the microcanonical expecta-
tion value; i.e., rare states matter. Let us note that for the
shown system sizes the average energy after the quench
(marked by a vertical line) lies still within the lowest few
energy bands. However, we estimated that, for the largest
sizes considered by the time-dependent density matrix
renormalization group method (L ¼ 100), for which there
is still no thermalization at accessible time scales, the
eigenstates with considerable weight will be spread over
tens of energy bands and the level statistics close to the
Gaussian orthogonal ensemble [29]. We have also studied
cases which should be easier from the point of view of
thermalization since they are not close to an integrable
point; in particular, we discuss Uf=J ¼ 1 (Fig. 2). In this

case the distribution of ðG1Þ� is much more peaked than for
Uf=J ¼ 10, and its width decreases when increasing sys-

tem sizes. Additionally, the support of the distribution
seems to decrease pointing towards thermalization.
Certainly, larger system sizes are needed to make any
firm statement.
As a conclusion, we find that the absence of thermaliza-

tion for finite size systems can be attributed to two sources:
(a) the distribution of the weights jc�j2 versus energy E�

and the distribution of O� in a restricted energy interval
may be very broad for finite size systems and (b) states
characterized by a value of O� different from the
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FIG. 1 (color online). Full diagonalization results of ðG1Þ�
versus energy E� in the even parity, k ¼ 0 momentum sector for
Uf=J ¼ 10 (upper panels) and correlation of jc�j versus ðG1Þ� for
a quench fromUi=J ¼ 2 (lower panel). Additionally, the average
energy (dashed-dotted line) after the quench and the average value
ofG1 obtained from the time-dependent density matrix renormal-
ization group method time evolution (L ¼ 100; see [13]) (solid
line) and the diagonal ensemble for L ¼ 11 (dashed line) are
shown. The shaded region corresponds to the microcanonical
average [32]. Upper-right panel: Distribution of values G1 for
the kinetic energy for the valuesE�=LJ 2 ½4:5; 5:5�. The average
value is removed from the distribution, and the histograms are
shifted vertically for visibility.
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FIG. 2 (color online). Left panel: Full diagonalization results
of ðG1Þ� versus energy E� in the even parity, k ¼ 0 momentum
sector for Uf=J ¼ 1. Right panel: Distribution of values G1 for

E�=LJ 2 ½�0:1; 0:1�. The linear trend of the observable in the
considered window is removed from the distribution, and the
histograms are shifted vertically for visibility.
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microcanonical value may have a considerable weight
jc�j2. All these phenomena clearly are at play for the finite
size Bose-Hubbard model investigated above. Equation (2)
and property (1) assure that the first origin of nonthermal-
ization will be cured for large enough systems—the dis-
tributions will eventually become infinitely peaked—but
not necessarily the second one. Indeed, we showed that in
some integrable models the origin of nonthermalization
stems from the existence of nonthermal eigenstates which
are less numerous compared to the thermal ones but still
exist and possibly bias a lot the diagonal expectation
values. What happens for nonintegrable systems and
what is the correct requirement on the jc�j2’s in order to
have thermalization in the thermodynamic limit is an open
question. Our results reveal two possible options to obtain
thermalization: (i) The support of the distribution of O�

around the thermal value shrinks to zero in the thermody-
namic limit; i.e., rare nonthermal states disappear alto-
gether (as at U=J ¼ 1 seemingly), and (ii) rare states
exist but the jc�j2’s do not bias too much the microcanon-
ical distribution toward them. Since the only a priori dis-
tinction between rare and typical states is that the latter are
overwhelming more numerous, a plausible (but not neces-
sary) assumption leading to thermalization is that the
jc�j2’s sample rather uniformly states with the same en-
ergy. Note that the existence of rare states for very large
nonintegrable models is not completely unreasonable as
suggested by mathematical physics results obtained in the
semiclassical limit [5,30]. Both scenarios are testable in
numerical experiments. One has to study how the support
of the distribution ofO� evolves with the size of the system
to understand whether (i) is realized; see [24] for a first
attempt. In order to study (ii), one can use the (von
Neumann) Kullback-Leibler (KL) entropy SKL [31] of
the Gibbs distribution with respect to the diagonal en-
semble. A ‘‘rather uniform sampling’’ would correspond
to a zero intensive SKL in the thermodynamic limit.

We conclude by stressing that thermalization after a
quantum quench appears to be a property that emerges
for large enough system sizes. Understanding the physics
behind this ‘‘finite size thermalization length’’ and its
dependence on the distance from integrability is a very
interesting problem worth investigating in the future,
especially because some cold atomic systems may well
be below this thermalization threshold.
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