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We introduce an efficient, scalable Monte Carlo algorithm to simulate cross-linked architectures of

freely jointed and discrete wormlike chains. Bond movement is based on the discrete tractrix construction,

which effects conformational changes that exactly preserve fixed-length constraints of all bonds. The

algorithm reproduces known end-to-end distance distributions for simple, analytically tractable systems of

cross-linked stiff and freely jointed polymers flawlessly, and is used to determine the effective persistence

length of short bundles of semiflexible wormlike chains, cross-linked to each other. It reveals a possible

regulatory mechanism in bundled networks: the effective persistence of bundles is controlled by the linker

density.

DOI: 10.1103/PhysRevLett.105.248105 PACS numbers: 87.16.Ka, 87.15.La, 87.16.af

TheKratky-Porodwormlike chain (WLC) [1] has proven
to be an indispensablemodel for the coarse-grained descrip-
tion of stiff polymers. Biophysicists, in particular, have
applied the model to glean the mechanics of a large variety
of biological filaments, including actin [2,3], double-
stranded DNA [4,5], unstructured RNA [6], fibrin [7],
tropocollagen [8], and many other polypeptides. However,
in biologically relevant settings such filaments hardly ever
occur or function alone as single chains. Instead, supra-
molecular associations—covalent or transient—locking
many chains into bundles or networks are the prevalent
motif. While it is perhaps only natural to consider supra-
molecular structures ofWLC’s and study the effect of cross-
linking in them, attempts to do so are severely hampered by
the practical incompatibility of the connectivity constraints
inherent to the architecture with adaptable and fast numeri-
cal algorithms. This Letter outlines an effective, scalable
method for numerical analysis of such architectures, and
clears the way for precise statistical-mechanical analysis of
realistic supramolecular polymeric assemblies.

The WLC is specified by a continuously differentiable
space curve rðsÞ of length ‘c parametrized by the arc length
parameter s. It is further endowed with a Hamiltonian that
quantifies the cost of bending the curve:

H ¼ �

2

Z ‘c

0
ds

�
@2r

@s2

�
2
; (1)

where � is the bending modulus. Implicit in this definition
is the constraint of local inextensibility, that is, the local
tangent magnitude j@r=@sj is unity. The persistence length
‘p ¼ �=kBT is the characteristic length governing the

decay of tangent-tangent correlations and provides a quan-
titative measure for a polymer’s flexibility. Though the
specification of the WLC model appears to be simple, the
constraint of local inextensibility inherent in the model
leads to considerable mathematical difficulty when at-

tempting to obtain an analytical solution of even the sim-
plest of such thermally fluctuating network structures.
Nonetheless, in the so-called semiflexible (‘p * ‘c) limit

the radial distribution function may be obtained analyti-
cally [9]. Furthermore, isotropic random networks of
WLC’s serve as a model for the mechanics of general
filamentous biomaterials [3,7].
Laboratory experiments and computer simulations may

have to pave the way to investigate the properties of those
biological networks that remain analytically intractable.
Even so, nontrivial complications arise since one often,
as a first step, needs to discretize the WLC reducing it to a
chain of tethers of fixed length (see, e.g., [10]). The widely
used molecular dynamics (MD) constraint algorithms,
such as SHAKE [11] and RATTLE [12] have been developed
to deal with these fixed-length constraints, but have, in
practice, been limited to tree structures and rigid loops—
see Figs. 1(b) and 1(c)].
Markov chain Monte Carlo (MCMC) constraint algo-

rithms offer a tantalizing alternative in that being
purely stochastic, they allow for unphysical moves thus

FIG. 1 (color online). (a) Linear chain; (b) loopless branched
polymer; (c) closed loop; (d), (e), and (f) are network structures
which possess two or more closed loops that share the same
polymeric link. The MCMC move TRACTRIX, introduced in this
Letter, can address these structures.
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eliminating the need for time-step integration and quickly
providing good equilibrium statistics. Over the past
30 years, a number of ‘‘smart’’ MCMC moves have been
advanced for the simulation of atomistic models of melts of
polymeric systems [13–15]. After a few modifications (for
example, after removing the fixed bond-angle constraint
inherent in many atomic-scale models) most of these tech-
niques can be carried over into the simulation of the more
coarse-grained discrete WLC models. However, these
techniques are limited in the variety of cross-linked archi-
tectures which they are able to address [15,16].

In this Letter we introduce TRACTRIX: a MCMC move
that may be used to accurately simulate various cross-
linked freely jointed and discrete WLC architectures
(Fig. 1). The common feature of the structures (d), (e),
and (f) in Fig. 1 that distinguishes them from the rest [(a),
(b), and (c)] is the existence of conjoined closed loops that
share one or more polymer links, a feature we wish to
address, and which is a central characteristic of both supra-
molecular filaments and cross-linked networks.

Three main technical problems are to be addressed in the
implementation of our method: (i) preservation of the
connectivity of the network structure, (ii) conformance to
the fixed-length constraints of the interlinking tethers, and
(iii) detailed balance. For the latter requirement, we adhere
to the recipe of the standard Metropolis algorithm, which is
to ensure that each trial move is reversible, and that its
probability of acceptance—the so-called acceptance ra-
tio—is correctly computed to eventually yield Boltzmann
statistics. As pointed out, for instance, by Maggs [17], in
continuum systems such as ours the volume element in the
vicinity of the state is also transformed, and we must
therefore consider the Jacobian determinant of the trans-
formation when determining the acceptance ratio.

The basic unit of any network is the star which consists
of ns linear chains terminating at a single central node (see
Fig. 2) by means of a cross-link. Any positive integer value
for ns constitutes a star, but typically for biological net-
works ns ¼ 4. Without loss of generality, let us consider
the 3-arm star illustrated in Fig. 2(b) and assume that the
ends A, B, and C of its arms are temporarily fixed in space
but that the central node O is free to move. To preserve the

network connectivity at all times we must, whenever O is
displaced by some vector�, move all the ends of the linear
chains that terminate at O by the same displacement.
Typically � is a random displacement chosen from a
spherically symmetric distribution during the simulation.
We may thus treat each of the linear chains independently
so our focus may now narrow down to a single linear chain
anchored at one end but with the other end free to move.
The problem at hand may be set forth in two parts. First,
given the initial contour of the chain, how may we revers-
ibly deform it so that its free end is displaced by exactly�
[18]? In effect, we seek a suitable invertible transform G�

that will act on the chain incrementing its end-to-end
vector by�. Second, with what probability must we accept
this deformation?
We will proceed by considering a linear chain for which

both ends are initially free to move and we will determine
its new position after we displace one end by �0. The chain
may be discretized into a series of N bonds t1; t2; . . . ; tN of
fixed length t interlinking the sequence of coordinates
r0; r1; . . . ; rN , so that the ith bond ti ¼ ri � ri�1, and
jri � ri�1j � t ¼ 0 (t ¼ const: and i ¼ 0; 1; . . . ; N). The
bending energy of the discretized WLC is given by [9]
EðfrkgÞ ¼ �"

P
N�1
i¼1 ti � tiþ1, where " ¼ kBT‘p=t

3. This

expression can be shown to approach the energy for the
continuous chain in Eq. (1) in the limit of N ! 1 and
t ! 0 while keeping constant Nt ¼ ‘c and "t2=N.
However, it is sufficient to discretize the WLC so that there
are at least 3 bonds in one persistence length [9]. Let g�i�1

be an operator that will transform the pair fri�1; rig into
fr0i�1; r

0
ig so that r0i�1 ¼ ri�1 þ �i�1 and jr0i�1 � r0ij ¼

jri�1 � rij ¼ t. One may readily select any known trans-
formation that satisfies these two latter requirements, but
for reasons that we will justify shortly, let us adopt
Hoffman’s [19] discrete tractrix construction [20] which
is illustrated geometrically in Fig. 3(a): first, rigidly trans-
late the bond ti by �i�1 so that fri�1; rig is moved to
fr0i�1; r

00
i g. Next, form the parallelogram spanned by �i�1

and fti, where f is some adjustable factor (f ¼ 2 in
Fig. 3). Finally, to obtain r0i reflect r00i in the parallelogram’s
diagonal which passes through r0i�1. Figure 3(b) shows that

FIG. 2 (color online). (a) Section of a network of WLC’s.
(b) The basic unit of a network: the star. When the central
node O is displaced by a random vector �, each of the arms
[e.g., link ~AO in (c)] of the star may be treated independently.

FIG. 3 (color online). (a) Discrete tractrix transformation of
the bond ti: (i) Rigidly translate the bond ti by �i�1 so that
fri�1; rig is moved to fr0i�1; r

00
i g. (ii) Construct the parallelogram

spanned by �i�1 and 2ti. (iii) Reflect r
00
i in the parallelogram’s

diagonal (dashed line) to obtain r0i. (b) Inverse of the trans-
formation in (a) showing that the tractrix transformation is
reversible. In both cases the length of the bond is preserved.
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following the same procedure for the inverse transform
g�1
�i�1

¼ g��i�1
, but this time starting from the initial posi-

tion fr0i�1; r
0
ig we recover the original pair fri�1; rig thus

demonstrating the transform’s reversibility. It can be shown
that

r 0
i ¼ gTðri; ri�1; � i�1; fÞ � pi þ 2wi

ti � wi

wi � wi

; (2)

where pi ¼ r0i�1 � ti and wi ¼ fri þ ð1� fÞri�1 � r0i�1.
We can now effect a transformation, denoted by G0

�0
, on

the entire chain by displacing the polymer end r0 by �0 so
that r00 ¼ r0 þ �0, then successively applying the discrete

tractrix transformation with constant f to every bond
t1; t2; . . . ; tN in that order, each time setting �i�1 ¼ r0i�1 �
ri�1. Eventually, we obtain a new conformation of the
chain: fr00; r01; . . . ; r0Ng ¼ G0

�0
fr0; r1; . . . ; rNg. Moreover we

find that G0
�0

is reversible since to recover the original

configuration all we need to do is apply G0
��0

to the new

configuration. Another important feature of this transfor-
mation is that in general the end-to-end vector R ¼
r0 � rN changes, albeit not by �0, since the other end rN
is also displaced in the process. However, suppose we
wanted to change the end-to-end vector of the polymer
by exactly�, there may exist some �0 ¼ �� for which this
is possible, i.e., r0 þ�� rN ¼ r0 þ �� � r0N.

Thus we may address the aforementioned problem of the
anchored polymer chain by temporarily setting it free, then
determiningG0

�� for whichR is incremented by exactly�.

After applyingG0
�� , we rigidly translate the entire chain by

a displacement rN � r0N so that the tail end which was
temporarily set free coincides once more with its previous

position. We summarize the full transformation frðsÞ0 ; rðsÞ1 ;

. . . ; rðsÞN�1g !
G�frðsþ1Þ

0 ; rðsþ1Þ
1 ; . . . ; rðsþ1Þ

N�1 g of the anchored lin-

ear discretized chain as follows:

r ðsþ1Þ
0 ¼ rðsÞ0 þ �� þ ðrðsÞN � r0ðsÞN Þ ¼ rðsÞ0 þ�; (3)

r ðsþ1Þ
i ¼ r0ðsÞi þ ðrðsÞN � r0ðsÞN Þ; 0< i < N; (4)

where �� solves the second equality in Eq. (3), and

r0ðsÞ0 ¼ rðsÞ0 þ ��;

r0ðsÞi ¼ gTðrðsÞi ; r0ðsÞi�1; r
0ðsÞ
i�1 � rðsÞi�1; fÞ; 0< i � N:

(5)

In n dimensions, Eq. (3) is a system of n nonlinear equa-
tions in n unknowns which may be solved for ��. The
acceptance ratio of G� is given by

�ðsÞ!ðsþ1Þ ¼ e��Eðrðsþ1Þ
k

Þ

e��EðrðsÞ
k
Þ

��������
@ðrðsþ1Þ

1 ; . . . ; rðsþ1Þ
N�1 Þ

@ðrðsÞ1 ; . . . ; rðsÞN�1Þ
��������; (6)

the last factor being the Jacobian determinant detðJG�
Þ of

the transformation. Notice that we have used the fact that
@rðsþ1Þ

0

@rðsÞ
k

¼�0k1n, where 1n is the n� n identity matrix and �ij

is the Kronecker delta [see Eq. (3)], to eliminate the first
n rows and columns of JG�

as they do not contribute to the

value of the determinant. The key to computing JG�
lies in

first differentiating Eq. (3) with respect to rðsÞk and solving it

to obtain

@r0ðsÞ0

@rðsÞk

���������
¼

�
1n � @r0ðsÞN

@r0ðsÞ0

��������frðsÞj g

��1 � @r
0ðsÞ
N

@rðsÞk

���������0¼��

þ ð�0k � �NkÞ1n

where both derivatives in the right-hand-side may be found
by differentiating Eq. (2) appropriately. The other deriva-

tives
@r0ðsÞi

@rðsÞ
k

j� for i ¼ 1; . . . ; N follow recursively from the

latter equation after differentiating Eq. (5). Finally, one
may obtain all the matrix elements of JG�

by differentiat-

ing Eq. (4) and substituting these results.
The determinant itself may be computed numerically by

using LU decomposition which has a complexity of
OðN3Þ. The algorithm is fully scalable—a suitable cutoff
for the number of bonds N taking part in the discrete
tractrix move may be chosen beforehand to suit the speed
of the computer.
Typically, for one simulation step, a central node is

picked at random and displaced by �. The corresponding
�� for each arm originating from the central node is
numerically solved to a specified precision and G� ap-
plied. If no solution for �� is found for an arm, or if the
numerical solver cannot reproduce the original configura-
tion after the inverse transformation G�� is applied, then
the entire simulation step is rejected in accordance with the
Metropolis algorithm rules [13], otherwise the complete
acceptance ratio for the star’s deformation is found by
computing its total change in energy, the product of its
arms’ Jacobian determinants, and finally plugging them
into Eq. (6). To ensure ergodicity, a few steps with random
crankshaft rotations can be applied to each arm between
TRACTRIX moves—the crankshaft rotations will enable

each linking linear chain between nodes of the network
to explore more of its possible conformations as the nodes
remain fixed in space, while the discrete tractrix moves
will displace the nodes themselves. We will outline several
efficient variations of TRACTRIX in a future publication.
Our algorithm is the central result of this Letter. To test it,

we have applied it to various freely jointed architectures
(" ¼ 0)with both large and small numbers of bonds. In each
case, TRACTRIX reproduced the equilibrium end-to-end dis-
tance distributions in exact agreement with their predicted
analytical results. For systems where no such results exist,
we conclude with a simple demonstration of TRACTRIX’
proper functioning and use: Fig. 4 shows the results of
simulations of various cross-linked WLC architectures,
demonstrating an effect of some biological significance:
cross-linked supramolecular polymers show a rising effec-
tive persistence length ‘�p with cross-linking density n�.
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Here ‘�p is defined as the persistence length of that WLC

which has the same ‘c and expected value of the end-to-end
distance hri� ½RdrrPðrÞ=ð4�r2Þ�=½RdrPðrÞ=ð4�r2Þ� as

the n�-cross-linked bundle [PðrÞ denotes the end-to-end
distance distribution]. Using this design motif, nature may
create supramolecular filaments of tunable effective stiff-
ness with only two kinds of molecules at its disposal:
identical chains and cross-linkers applied in varying con-
centrations. Note, too, that PðrÞ of an n�-cross-linked
bundle is not the same as that of a single WLC with
‘p ¼ ‘�pðn�Þ—in fact, one may have to use an extensible

WLC variant to capture the complete effective mechanics.
Though the stiffness of a bundle in reality also depends on
the cross-linkers’ stiffness and size [21], we did not consider
this dependence in this initial survey. Nor did we consider
the effect of excluded volume interactions between chains,
which would result in further stiffening each bundle while
incurring the additional computational cost of having to
reject all MCMC moves that cause filaments of now finite
cross section to overlap or violate topological constraints.
Extensive simulations of the collagen fibril, a supramolec-
ular assembly of polypeptide triple helices are under way,
and will be reported on in an upcoming publication. We
emphasize that, although this work was inspired by biopo-
lymeric structures, TRACTRIX is in fact capable of dealing
with similar configuration-space constraints in much more
general settings and as such may find use well beyond
biological polymers.
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FIG. 4 (color online). Simulation results (after �107 Monte Carlo steps): probability density distribution functions PðrÞ for the end-
to-end distance r (normalized to unity) of freely fluctuating bundles of three WLC’s each with ‘p ¼ 0:5‘c except for the last bundle

which has ‘p ¼ 2‘c. Each bundle is cross-linked at equal intervals along the contour lengths of its chains. n� is the number of cross-

links in a bundle. The red dashed curve is an analytical estimate for the last bundle: N 4�r2½GðrÞ�3 where GðrÞ is the spherically
symmetric radial distribution function for a stiff WLC [9] (here ‘p ¼ 2‘c), and N is a normalization constant. As expected, this

prediction agrees fairly well with results for bundles with ‘p * ‘c. The inset shows the dependence of effective persistence length ‘�p
(of those bundles with ‘p ¼ 0:5‘c) on n�. (See text for details.)
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