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We study evolution driven by spatial heterogeneity in a stochastic model of source-sink ecologies.

A sink is a habitat where mortality exceeds reproduction so that a local population persists only due to

immigration from a source. Immigrants can, however, adapt to conditions in the sink by mutation. To

characterize the adaptation rate, we derive expressions for the first arrival time of adapted mutants. The

joint effects of migration, mutation, birth, and death result in two distinct parameter regimes. These results

may pertain to the rapid evolution of drug-resistant pathogens and insects.
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Biological evolution and ecology are intimately linked,
because the reproductive success or ‘‘fitness’’ of an organ-
ism depends crucially on its ecosystem. The biotic and
abiotic factors defining an ecosystem often have complex
time- and space-dependent dynamics [1]. Yet, most models
of evolution describe homogeneous, fixed-size populations
subjected to a constant selection pressure [2]. Even though
such minimal descriptions have led to invaluable insights
into some of the major evolutionary forces [2], their scope
is clearly limited. An important challenge in evolutionary
biology is therefore to understand the interaction between
ecology and evolution.

In this Letter, we study how spatial heterogeneities can
drive evolution in ecologies displaying so-called source-
sink dynamics (SSD) [3–6]. A species’ habitat is called a
sink if the local mortality exceeds the local reproduction
so that a population can persist only due to continuous
immigration from a source habitat, where reproduction
exceeds mortality. Sinks often occur at the border of a
species’ range: If an environmental variable such as tem-
perature or humidity varies in space and limits a species’
range, the conditions at the border are often poor. SSD
results in a sustained presence of poorly adapted immi-
grants in the sink; this suggests that it could assist adap-
tation to the sink conditions. Immigrants that, due to
mutations, acquire the ability to reproduce efficiently in
the sink have an opportunity to establish a population
there. Such a mutant can be successful even if it does
not have a competitive advantage in its original habitat
(the source); it is sufficient if the mutation allows it to
colonize the sink. Importantly, this adaptive process
driven by the opportunity to establish a new niche is
qualitatively different from the conventional notion of a
population climbing a fitness gradient [7,8].

Evolution in source-sink systems is not merely of
theoretical interest. For instance, SSD may accelerate the
evolution of drug resistance in bacteria [9]. In humans
or livestock treated with antibiotics, drug levels can vary
between different organs, creating sources and sinks within
a host [10]. Also, SSD can emerge when bacteria migrate

between treated and untreated individuals [9]. Likewise,
the migration of fruit flies between plantations using differ-
ent (amounts of) insecticides could assist the emergence of
insecticide resistance [11,12]. The evolution of virulence
has been associated with SSD as well [13–15].
Here we analyze a minimal stochastic model of adapta-

tion driven by SSD. In particular, we study how the rate of
adaptation depends on parameters such as migration and
mutation rates. Earlier studies examined source-sink sys-
tems from various perspectives. Although the models pro-
posed differ in various respects, they fall into three classes.
First, several models are based on deterministic equations
[16–21]. Such models are convenient but ignore the intrin-
sic stochasticity of the demographic processes, which, as
we will see below, can be important. Second, some studies
employ the formalism of quantitative genetics [22,23],
which describes the response of a quantitative trait to
selection in a population characterized by a distribution
of phenotypes. This line of attack is appropriate only
for multilocus traits and is again deterministic. Third,
individual-based simulations have been used [24].
Unfortunately, such studies are necessarily limited to a
narrow set of parameters. In contrast, our model is fully
stochastic and yields analytical results that are valid for a
wide range of parameter values.
We consider a haploid population in an environment

consisting of two ‘‘patches’’ [Fig. 1(a)]. Individuals mi-
grate between the patches at a rate � and die at a rate �.
Each organism has one of two possible genotypes, called
‘‘wild type’’ (W) and ‘‘mutant’’ (M). Mutations turn a wild
type into a mutant at a rate �f; the reverse occurs at a rate

�b. The reproduction rate of genotype g 2 fW;Mg in
patch i obeys the logistic form �igðNiÞ � maxfrigð1� Ni=

KÞ; 0g, where Ni is the population size in patch i. This
keeps Ni finite and introduces competition between organ-
isms sharing a patch. K is the carrying capacity, and rig is

the maximal reproduction rate. The wild type can repro-
duce in patch 1 only (r2W ¼ 0); this introduces SSD. By
contrast, mutants can reproduce in both patches. We ini-
tially choose r1W ¼ r1M � r, so that both types are equally
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‘‘fit’’ in patch 1. Later we will relax this to consider the
effect of a possible fitness cost conferred by the mutation.

We make a few biologically motivated assumptions.
First, we limit our analysis to large populations (K � 1).
Second, we assume that mutation rates are low (�b;�f �
�; �). Third, we assume that � < �; i.e., organisms are
unlikely to migrate multiple times within their lifetime.

The adaptation process consists of two parts. First, a
mutant has to appear in the sink; next, this mutant has to
establish a population. The latter process has been treated
by (stochastic) models of colony growth [18,19,25]. We
therefore focus on the question of how long it takes before
the first mutant arrives in patch 2 starting from a wild-type
population in patch 1.

Figure 1(b) shows the two pathways that can generate a
mutant in patch 2. In the upper path (denoted by ↱), first a
mutation occurs in patch 1 and later a mutant migrates to
patch 2. In the lower path (⬏), a wild type first migrates to
patch 2 and then mutates. A priori it is unclear which path
is more likely. Below, we derive the first arrival time (FAT)
distributions for both paths.

We start with path ↱. Let nig be the number of organisms

with genotype g in patch i. SinceK � 1,N1 � n1W þ n1M
is approximately constant; it fluctuates around the value
N � ½1� ð�þ �Þ=r�K for which the reproduction rate
equals the rate at which organisms disappear from the first
patch [�1MðNÞ ¼ �þ �] [26]. Below, we assume that
N1 ¼ N, which allows us to write a master equation for
the probability P↱ðn; tÞ that at time t no mutant has yet

migrated to patch 2 and n1M has value n:

@tP↱ðn;tÞ¼w�ðnþ1ÞP↱ðnþ1; tÞþwþðn�1ÞP↱ðn�1; tÞ
�½w�ðnÞþwþðnÞþuðnÞ�P↱ðn;tÞ; (1)

with w� � ð�þ�bÞn, wþðnÞ � �1MðNÞnþ�fðN � nÞ,
uðnÞ ¼ �n, and initial condition P↱ðn; 0Þ ¼ �n;0 (�n;m is

the Kronecker delta function).
We rewrite Eq. (1) in terms of the generating function

G↱ðz; tÞ � P
nz

nP↱ðn; tÞ and solve the resulting partial dif-

ferential equation. The probability that at time t no mutant
has migrated yet, S↱ðtÞ ¼ G↱ð1; tÞ, follows as

S↱ðtÞ ¼
�

c↱e
b↱t

c↱ coshðc↱tÞ þ b↱ sinhðc↱tÞ
�
a↱
; (2)

with a↱ � �fN=ð�þ ���fÞ, b↱ � ð�b þ�fÞ=2, and

c↱ � ½b2↱ þ �ð�þ ���fÞ�1=2. Now the desired FAT pro-

bability density F↱ðtÞ � �dS↱ðtÞ=dt can be expressed as

F↱ðtÞ ¼ �hn1MðtÞiS↱ðtÞ; (3)

where hn1MðtÞi is the mean value of n1M at time t given that
no mutant has migrated yet; it obeys

hn1MðtÞi ¼
�fN tanhðc↱tÞ

c↱ þ b↱ tanhðc↱tÞ : (4)

These results show that path ↱ is governed by two time
scales. First, hn1MðtÞi builds up in a time scale �↱ ¼ 1=2c↱.
Second, at large times F↱ðtÞ decays with time scale

�0↱ ¼ ½a↱ðc↱ � b↱Þ��1 due to the time dependence of

S↱ðtÞ; this time scale reflects the total migration rate after

hn1Mi has equilibrated. We define �↱ � �↱=�
0
↱.

We note that b↱ � c↱; thus �↱ � �fN=½2ð�þ �Þ�, and
the mean first arrival time (MFAT) T↱ is given by

c↱T↱ � ð ffiffiffiffi
�

p
=2Þ�ð�↱Þ=�ð�↱ þ 1=2Þ; (5)

where �ðxÞ is the Gamma function. Interestingly, only two
lumped parameters remain: c↱ and �↱. If �↱ � 1 (i.e.,

�fN � �þ �), the process is limited by the generation

of mutants, whereas if �↱ � 1 (i.e., �fN � �þ �), it is

migration-limited. By expanding Eq. (5) and using
Stirling’s approximation, we obtain in these limits

T↱ �

8
>>>><

>>>>:

1

2c↱�↱
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�þ 1

p

�fN
ðif �fN � �þ �Þ;

ffiffiffiffiffiffiffiffiffiffiffiffi
�=�↱

q

2c↱
�

ffiffiffiffiffiffiffiffiffiffiffiffi
�=2�

�fN

s

ðif �fN � �þ �Þ:
(6)

The plot in Fig. 2(a) clearly reveals these two regimes.
We now turn to the lower path, ⬏. As we expect the

number of mutants in patch 1 to be small, we assume that
n1W � N. A master equation can then be written for the
probability P⬏ðn; tÞ that at time t no mutation has yet
occurred in patch 2 and n2W ¼ n. It is identical to
Eq. (1) but with w�ðnÞ � ð�þ �Þn, wþðnÞ � �N, and
uðnÞ � �fn. The probability S⬏ðtÞ that no mutation occurs
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FIG. 1 (color online). Source-sink model. We consider 2
patches and 2 genotypes. The wild type can reproduce only
in patch 1, while the mutant can grow in both patches.
(a) Organisms mutate and migrate (indicated by arrows) and
die at rate �. (b) A wild-type population in patch 1 will in time
give rise to a mutant in patch 2. Arrows indicate the two
competing pathways.
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FIG. 2 (color online). MFAT vs parameters, for (a) path ↱ and
(b) path ⬏. In each case the MFAT depends on only two lumped
parameters: ci and �i. Both plots have two regimes.
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before time t and the FAT distribution F⬏ðtÞ can now be
obtained by a similar derivation as for the ↱ case.

Again the process has two time scales: �⬏ ¼ 1=c⬏, with
c⬏ � �þ �þ�f, and �0⬏ ¼ c⬏=ð�fN�Þ. We define

�⬏ � �⬏=�
0
⬏; the MFAT of path ⬏, called T⬏, then reads

c⬏T⬏ ¼ ðe=�⬏Þ�⬏�ð�⬏; �⬏Þ; (7)

where �ðx; yÞ is the lower incomplete Gamma function.
Figure 2(b) is a plot of Eq. (7); it is again characterized by
two regimes. Indeed, in the limits �⬏ � 1 and �⬏ � 1,

T⬏�

8
>>>><

>>>>:

1

c⬏�⬏
��=�þ1

�fN
ð�fN�ð�þ�Þ2=�Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=2�⬏

p

c⬏
�

ffiffiffiffiffiffiffiffiffiffiffiffi
�=2�

�fN

s

ð�fN�ð�þ�Þ2=�Þ:
(8)

We are now in the position to calculate the full FAT
distribution FðtÞ by taking into account both paths ↱ and⬏.
Since both paths are nearly independent, the probability
that neither path has completed at time t is SðtÞ �
S↱ðtÞS⬏ðtÞ, from which FðtÞ and the combined MFAT T
follow. However, comparing Eq. (6) to Eq. (8) we recog-
nize that T↱ < T⬏ unless �⬏ � 1, in which case T↱ � T⬏.

Therefore we conclude that path ↱ is dominant, and we
should expect FðtÞ � F↱ðtÞ and T � T↱.

We tested these results by using kinetic Monte Carlo
simulations. Figure 3(a) shows T as a function ofK and�f,

and Fig. 3(b) plots T versus � for various �. The curves are
theoretical predictions calculated by numerical integration
of SðtÞ. Figure 3(c) shows all data of Figs. 3(a) and 3(b) in a
single scaling plot. Since T � T↱, Eq. (5) predicts that all

points should collapse on one curve if c↱T is plotted against

�↱. This is indeed the case.

So far we have assumed that the wild type cannot
reproduce at all in patch 2. One may expect that path ⬏
could become more relevant if it does, albeit at a reduced
rate r2W < r. We now derive results for this extended
model. In the derivations for path ↱ the rate r2W plays no
role, but the results for path⬏ do change. The dynamics of
n2W can be approximated by the rate equation

dn2WðtÞ
dt

¼ �N þ r2Wð1� n2W=KÞn2W � ð�þ �Þn2W:

With initial condition n2Wð0Þ ¼ 0 it is solved by

n2WðtÞ ¼ �N tanhðc⬏tÞ
c⬏ þ b⬏ tanhðc⬏tÞ ; (9)

with b⬏�ð�þ��r2WÞ=2 and c⬏�ðb2⬏þ�r2WN=KÞ1=2.
The expression for S⬏ðtÞ has the same form as Eq. (2), but
with a⬏ � �fK=r2W , and we obtain

F⬏ðtÞ ¼ �fn2WðtÞS⬏ðtÞ: (10)

Again we find two time scales: �⬏ ¼ 1=2c⬏ and �0⬏ ¼
½a⬏ðc⬏ � b⬏Þ��1. If �⬏=�

0
⬏ � 1 (i.e., if �fK � r2W or

c⬏ � b↱), the first time scale can be ignored and T⬏ � �⬏.
In Fig. 4, we test this result with simulations. Evidently,

as long as r2W � �þ �, the MFAT is insensitive to
changes in r2W . Only when r2W approaches �þ � does
T⬏ decrease rapidly. Indeed, if r2W ¼ �þ �, we obtain
T↱ � T⬏. We therefore conclude that in source-sink sys-

tems, where r2W < �þ � (i.e., to the left of the vertical
line in Fig. 4), a nonzero r2W can result in at most a twofold
increase in the rate of adaptation.
For r2W > �þ �, although the FAT of a mutant in patch

2 is much reduced (see the red line to the right of the
vertical line in Fig. 4), it is more difficult for the mutant to
conquer patch 2 because it has to compete with the wild
type. To demonstrate this, Fig. 4 also shows the mean
waiting time before n2M ¼ 500, obtained from simula-
tions. Clearly, as r2W ! r the competition dramatically
slows down the growth of the mutant population.
Finally, we extend the model to include a fitness cost s of

adaptation; i.e., we consider r1M¼ð1�sÞr1W . This means
that, in Eq. (1), �1MðNÞ ¼ ð�þ �Þð1� sÞ. S↱ and F↱ are

still given by Eqs. (2)–(4), but with modified constants
a↱ � �fN=½ð�þ �Þð1� sÞ ��f�, b↱ � ½�b þ�f þ
sð�þ �Þ�=2, and c↱ � ½b2↱ þ �ð�þ �Þð1� sÞ � ��f�1=2.
It follows that s becomes important only when s *

ffiffiffiffiffiffiffiffiffi
�=�

p

(given that �b;�f � � & �). For example, even at a low

migration rate �=� ¼ 10�2 (that is, 99% of the organisms
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FIG. 3 (color online). MFAT T vs parameters. Unless specified, r ¼ 1, � ¼ 10�1, � ¼ 10�3, �b ¼ 10�4, �f ¼ 10�7, and K ¼ 105.
Data points are averages over 104 simulations; lines are theoretical predictions. (a) T vs carrying capacity, for various mutation rates.
(b) T vs migration rate, for various death rates. (c) All data points from (a) and (b) collapse on a single curve after rescaling. The plot
shows two regimes, corresponding to mutation- or migration-limited dynamics.
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never migrate in their lifetime), the fitness cost is notice-
able only if s * 0:1. In population genetics, this is consid-
ered a very large fitness pressure [2]. In conclusion, the
adaptation is not slowed down by a fitness cost unless the
cost is very large. This apparently surprising result may be
understood by noting that the mutant is initially very rare in
the source so that a weak selection pressure is over-
whelmed by the demographic noise [27]. This result under-
scores the importance of stochasticity in the process.

In summary, we formulated a stochastic model for adap-
tation in source-sink ecologies. In contrast with most tradi-
tional models of evolution, in which adaptation results
from competition within a well-stirred population, here
adaptation is driven by spatial heterogeneity. To character-
ize the speed of adaptation, we derived analytical results
for the arrival time of the first adapted mutant in the sink.
Two qualitatively distinct regimes are found, in which
the system is either mutation-limited (�fN � �þ �) or

migration-limited (�fN � �þ �). In the latter regime the

mean FAT does not scale as ð�fNÞ�1, as one might naively

expect, but as ð�fNÞ�1=2. Because real beneficial mutation

rates and population sizes vary considerably (mutation
rates in the range 10�5–10�10 per generation and popula-
tion sizes 104–1010 are reasonable), both regimes can be
relevant [12]. Furthermore, the results demonstrate that the
first adapted mutant found in the sink usually originates as
a neutral mutation in the source which by chance migrates
to the sink (the so-called ‘‘Dykhuizen-Hartl effect’’
[28,29]). Mutations arising in the sink contribute only if
the system is migration-limited (�⬏�1) or if r2W ��þ�
(when patch 2 can hardly be called a sink). Strikingly, these
results hold even if the mutation is mildly deleterious in the
source habitat.

Many variations on the current model can be envisioned.
For instance, we assumed that the reproduction rate in
patch 2 depended on the genotype while the death rate
was assumed constant. Yet, in reality both rates could vary
in space. Also, the model can be extended to include more
than two patches, which would presumably allow for

a stepwise adaptation to an environmental gradient. In
future work such variations and extensions could be ex-
plored within the formalism presented here.
This work was supported by the Center for Theoretical
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