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Topological insulators can be generally defined by a topological field theory with an axion angle � of 0

or �. In this work, we introduce the concept of fractional topological insulator defined by a fractional

axion angle and show that it can be consistent with time reversal T invariance if ground state degeneracies

are present. The fractional axion angle can be measured experimentally by the quantized fractional bulk

magnetoelectric polarization P3, and a ‘‘halved’’ fractional quantum Hall effect on the surface with Hall

conductance of the form �H ¼ p
q

e2

2h with p, q odd. In the simplest of these states the electron behaves as a

bound state of three fractionally charged ‘‘quarks’’ coupled to a deconfined non-Abelian SUð3Þ ‘‘color’’
gauge field, where the fractional charge of the quarks changes the quantization condition of P3 and allows

fractional values consistent with T invariance.
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Most states of quantum matter are classified by the
symmetries they break. However, topological states of
quantum matter [1] evade traditional symmetry-breaking
classification schemes, and are rather described by topo-
logical field theories (TFT) in the low-energy limit. For the
quantum Hall effect, the TFT is the 2þ 1 dimensional
Chern-Simons (CS) theory [2] with coefficient given by
the quantized Hall conductance. In the noninteracting
limit, the integer quantized Hall (IQH) conductance in

units of e2

h is given by the TKNN invariant [3] or first

Chern number. In the presence of strong correlations, one
can also observe the fractional quantum Hall effect
(FQHE), where the Hall conductance is quantized in ra-

tional multiples of e2

h . In both cases however, these topo-

logical states can exist only in a strong magnetic field
which breaks time reversal (T) symmetry.

More recently, T-invariant topological insulators (TI)
have been studied extensively [1,4,5]. The TI state was
first predicted theoretically in HgTe quantum wells, and
observed experimentally [6–9] soon after. The theory of
TI has been developed along two independent routes.
Topological band theory identified Z2 topological invari-
ants for noninteracting band insulators [8,10,11]. The TFT
of T-invariant insulators was first developed in 4þ 1
dimensions, where the CS term is naturally T invariant
[12,13]. Dimensional reduction then gives the TFT for TI
in 3þ 1 and 2þ 1 dimensions [14]. The TFT is generally
valid for interacting systems, and describes the experimen-
tally measurable quantized magnetoelectric response. The
coefficient of the topological term, the axion angle �, is
constrained to be either 0 or � by T invariance. The TFT
has been further developed in Refs. [15,16]. More recently,
it has been shown that it reduces to the topological band
theory in the noninteracting limit [17].

By analogy with the relation between the IQHE and
FQHE, one is naturally led to the question whether there
can exist a ‘‘fractional TI.’’ In 2þ 1 dimensions, an ex-
plicit wavefunction for the fractional quantum spin Hall
state was first proposed in Ref. [9], and the edge theory was
investigated in Ref. [18]. The T-invariant fractional topo-
logical state has also been constructed explicitly in 4þ 1
dimensions [12]. Since T-invariant TI form a dimensional
ladder in 4, 3, and 2 dimensions [14,19,20], it is natural to
investigate the T-invariant TI in 3þ 1 dimensions. Frac-
tional states generally arise from strong interactions. Since
topological band theory cannot describe such interactions,
we formulate the general theory in terms of the TFT.

The TI is generally described by the effective action S� ¼
�
2�

e2

2�

R
d3xdtE �B, where E and B are the electromag-

netic fields [14]. Under periodic boundary conditions, the
partition function and all physical quantities are invariant
under shifts of � by multiples of 2�. Since E �B is odd
under T, it appears that the only values of � allowed by
T are 0 or � mod 2�.
In this Letter, we show that there exist T-invariant in-

sulating states in 3þ 1 dimensions with P3 � �
2� quantized

in noninteger, rational multiples of 1
2 of the form P3 ¼ 1

2
p
q

with p, q odd integers. The magnetoelectric polarization P3

is defined by the response equation P ¼ � B
2� ðP3 þ constÞ,

where B is an applied magnetic field and P is the induced
electric polarization. Such a fractionalized bulk topological
quantum number leads to a fractional quantum Hall con-

ductance of p
q

e2

2h on the surface of the fractional TI. In

contrast to the usual QHE in 2þ 1 dimensions, the surface
QHE does not necessarily exhibit edge states and thus
cannot be directly probed by transport measurements.
Alternatively, it can only be experimentally observed
through probes which couple to each surface separately,
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such as magneto-optical Kerr and Faraday rotation [14,16].
Generically, a slab of fractional TI can have different frac-
tional Hall conductance on the top and bottom surfaces,
which can be determined separately by combined Kerr
and Faraday measurements, independent of nonuniversal
properties of the material [21]. Our approach is inspired by
the composite particle, or projective construction of FQH
states [2,22–25]. The idea is to decompose the electron
with charge e into N fractionally charged, fermionic
‘‘partons’’, which have a dynamics of their own. One con-
siders the case that the partons form a known topological
state, say a topological band insulator. When the partons are
recombined to form the physical electrons, a new topologi-
cal state of electrons emerges. In the FQH case, for ex-
ample, the � ¼ 1

3 Laughlin state can be obtained by splitting

each electron intoN ¼ 3 partons of charge e
3 . Each parton

fills the lowest Landau level and forms a noninteracting
� ¼ 1 IQH state. Ignoring the exponential factors, the
parton wave function is the Slater determinant IQH wave
function �ðfzigÞ /

Q
i<jðzi � zjÞ, and the electron wave

function is obtained by gluing three partons together,
which leads to the Laughlin wave function �1=3ðfzigÞ /Q

i<jðzi � zjÞ3. Similarly, in 3þ 1 dimensions one can

construct an interacting many-body wave function by glu-
ing partons which are in a Z2 topological band insulator
state. The parton ground state wave function�1ðfrnsngÞ is a
Slater determinant describing the ground state of a non-
interacting TI Hamiltonian such as the lattice Dirac model
[14], with frnsng, n ¼ 1; . . . ; N the position and spin coor-
dinates of the partons. The electron wave function is ob-
tained by requiring the coordinates of all N c partons
forming the same electron to be the same [22],

�N c
ðfrnsngÞ ¼ ½�1ðfrnsngÞ�N c : (1)

Equation (1) is the (3þ 1)-dimensional generalization of
the Laughlin wave function, and serves as a trial wave
function for the simplest fractional TI phases we propose.

More generally, we can consider N f different

‘‘flavors’’ of partons, with N ðfÞ
c partons of each flavor

f ¼ 1; . . . ;N f. This decomposition has to satisfy two

basic rules. First, to preserve the fermionic nature of the
electron, the total number of partons per electron must be
odd [Fig. 1(a)],

N ð1Þ
c þN ð2Þ

c þ � � � þN
ðN fÞ
c ¼ odd: (2)

Second, if qf < e is the (fractional) charge of partons of

flavor f, the total charge of the partons must add up to the
electron charge e,

N ð1Þ
c q1 þN ð2Þ

c q2 þ � � � þN
ðN fÞ
c qN f

¼ e: (3)

For instance, the � ¼ 1
3 Laughlin state described above

corresponds to N f ¼ 1, N ð1Þ
c ¼ 3, and q1 ¼ e

3 , which

satisfies both conditions. Here we consider that partons
of each flavor f condense in a (generally different)

noninteracting T-invariant TI state with axion angle �f ¼
�mod 2�. This is the analog of having partons condense in
various IQH states in the FQH construction. Finally, the
partons have to be bound together to yield physical elec-
trons. As we will see, this can be done by coupling partons

of flavor f to a SUðN ðfÞ
c Þ gauge field, which can be inter-

preted as a ‘‘color field’’ where partons of flavor f come in

N ðfÞ
c colors. Since the TI analog of the� ¼ 1

3Laughlin state

will involve three partons coupled to a SUð3Þ gauge field in
3þ 1 dimensions, we dub our partons ‘‘quarks’’ by analogy
with quantum chromodynamics (QCD).
To obtain a more systematical understanding of the

fractional TI, we now deduce its effective gauge theory
by way of a gedanken experiment. We consider subjecting
a noninteracting TI to strong electron-electron interactions,
and start with the simplest case of N f ¼ 1 with N c odd.

The electron being split intoN c quarks of charge
e

N c
, the

electron operator will be written as a product ofN c quark
operators c i�, i ¼ 1; . . . ;N c. However, the quark opera-
tors act in a Hilbert space which is larger than the physical
electron Hilbert space. We need to remove those states of
the quark Hilbert space which are not invariant under
unitary transformations which leave the electron operator
unchanged, i.e., SUðN cÞ transformations with quarks in
the N c representation. The projection onto the electron
Hilbert space can therefore be implemented by coupling
the quarks to a SUðN cÞ gauge field a� with a coupling

constant g. Outside the fractional TI, we expect the sys-
tem to be in the confined phase, in analogy to quark
confinement in QCD, which has only SUðN cÞ singlet
excitations in its low-energy spectrum, i.e., gauge-invariant
‘‘baryons’’. Quarks of a given flavor within the baryon are

antisymmetric in their N ðfÞ
c color indices; Fermi statistics

then implies that their spins are aligned. In a relativistic
theory this would imply that in the N f ¼ 1 theory the

baryon has spin N c

2 . In nonrelativistic lattice models this is

not a concern, but even within the context of relativistic
continuum field theories one can obtain composite spin- 12
electrons for N f > 1.

FIG. 1 (color online). (a) Quark picture of fractional TI with
flavor and color degrees of freedom; (b) surface FQHE vs
transport measurements [Eq. (7)]; (c) nontrivial vs trivial frac-
tional TI; (d) Witten effect as a probe of bulk topology.
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Inside the fractional TI, electron-electron interactions
translate into complicated interactions among quarks. We
consider the case that these interactions lead the quarks to
condense at low energies into a noninteracting T-invariant
TI state with axion angle �, and that the non-Abelian gauge
field a� enters a deconfined phase [26]. We now show that

such a phase is a fractional TI. A low-energy effective
Lagrangian for N f ¼ 1 can be conjectured in the form

L ¼ c yðiD0 �H�½�iD�Þc þLintðc y; c Þ; (4)

where D� ¼ ðD0;�DÞ ¼ @� þ i e
N c

A� þ iga� is the

Uð1Þem � SUðN cÞ gauge covariant derivative, and H� ¼
H�ðpÞ is the single-particle Hamiltonian for a T-invariant
TI with axion angle �. Lint represents weak T-invariant
residual interactions which do not destabilize the gapped
TI phase, and can thus be safely ignored. The kinetic Yang-
Mills Lagrangian for a� is generally present but not ex-

plicitly written.
Since the quarks are in a gapped TI phase, they can be

integrated out to yield an effective Lagrangian for the
gauge fields [14],

Leff ¼ �

32�2
����	Tr

�
e

N c

F��þgf��

��
e

N c

F�	þgf�	

�

¼�effe
2

32�2
����	F��F�	þ �g2

32�2
����	Trf��f�	; (5)

where Tr is the trace in theN c representation of SUðN cÞ,
F��¼@�A��@�A� and f��¼@�a��@�a�þ ig½a�;a��
are the Uð1Þem and SUðN cÞ field strengths, respectively,
and the electromagnetic response is governed by an effec-
tive axion angle

�eff ¼ �

N c

¼0;� �

N c

;� 3�

N c

;� 5�

N c

; . . . ; N codd: (6)

Eq. (5) is obtained by replacing the Uð1Þem ‘‘electron’’
field strength eF�� in the Uð1Þem topological term
�
2�

e2

2�E � B ¼ �e2

32�2 �
���	F��F�	 for noninteracting TI

[14] by the totalUð1Þem � SUðN cÞ ‘‘quark’’ field strength
e

N c
F�� þ gf��. Note that the crossed terms of the form

TrF��f�	 vanish due to the tracelessness of the SUðN cÞ
gauge field. More generally, �eff can be obtained from the
Adler-Bell-Jackiw anomaly, since � corresponds to the
phase of the quark mass [14]. In principle, the effective
theory can also be obtained for quarks in a trivial insulator
state with � ¼ 2n�, n 2 Z. However, such a state is
adiabatically connected to a trivial vacuum with � ¼ 0,
so that it is a trivial insulator in the bulk, although a
fractional �eff can still be obtained due to pure surface
effects. Since the focus of the present work is a fractional
TI state with nontrivial bulk, we always consider quarks
with � ¼ � mod 2� in the following.

We are now faced with our initial question of whether
the effective theory (5) and (6) breaks T invariance.
According to the first term in Eq. (5), T-invariance would

require �eff to be quantized in integer multiples of � if the
minimal electric charge was e [27]. However, the minimal
charge in our theory is e

N c
, i.e., that of the quarks.

Therefore, �eff has to be quantized in integer multiples of
�

N 2
c
. On the other hand, the second term in Eq. (5) requires

� to be quantized in integer multiples of � [28], which
means by Eq. (6) that �eff has to be quantized in units of
�
N c

. This latter constraint is consistent with, but stronger

than, the former [29], and the values of �eff allowed by T
invariance are thus correctly given by Eq. (6).
Eqs. (5) and (6) constitute a TFT which, precisely be-

cause it is topological, is insensitive to small T-invariant
perturbations and defines a new stable phase of matter,
the T-invariant fractional TI in 3þ 1 dimensions. The
effective theory can also be derived in the multiflavor

case N f � 1, with N ðfÞ
c satisfying rules (2) and (3).

Considering that quarks of flavor f form a noninteracting
TI with axion angle �f ¼ � mod 2� and integrating them

out yields an effective Lagrangian in the form of (5), but

with gauge groupUð1Þem �QNf

f¼1 UðN ðfÞ
c Þ=Uð1Þdiag. Here

Uð1Þdiag is the overall Uð1Þ gauge transformation of the

electron operator. The electromagnetic axion angle �eff is

given by �eff ¼ ðPN f

f¼1
N ðfÞ

c

�f
Þ�1. When

�f
� is odd for each

flavor, one can show that �eff ¼ �p=q with p, q odd
integers.
Important physical properties of the fractional TI can be

read off from Eq. (5). The surface of the fractional TI is an
axion domain wall with the Uð1Þem axion angle jumping
from �eff in the fractional TI to 0 in the vacuum. Such a
domain wall has a surface QHE with surface Hall con-

ductance �H;s ¼ �eff
2�

e2

h [14]. Therefore, the surface Hall

conductance of the fractional TI has the general form

�H;s ¼ p

q

e2

2h
; p; q odd: (7)

For example, in the simplest single-flavor case with � ¼ �

in Eq. (5), we have �H;s ¼ 1
N c

e2

2h withN c an odd integer,

corresponding to half of a � ¼ 1
N c

FQH Laughlin state.

The more general result (7) corresponds to half of a generic
Abelian FQH state [22,31].
The fractional axion angle and the associated surface

Hall conductance (7) are properties of the bulk topology. It
is important to distinguish them from a TI with �eff ¼ ��
and where the surface Dirac fermions form a FQH state
[32]. In a noninteracting TI with �eff ¼ �� for example,
both the axion domain wall and the surface FQH state
contribute to �H;s,

�H;s ¼
�
� 1

2
þ n

q

�
e2

h
¼ 2n� q

q

e2

2h
; (8)

with n
q an allowed filling fraction for a FQH state in 2þ 1

dimensions. For Abelian FQH states q is odd; hence the
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surface Hall conductance �H;s ¼ 2n�q
q

e2

2h has the same

general form as for the fractional TI [Eq. (7)]. As the
simplest example, the Laughlin state with n

q ¼ 1
3 leads to

�H;s ¼ � 1
6
e2

h [Fig. 1(c), right] which is the same as for a

genuine fractional TI with bulk P3 ¼ � 1
6 [Fig. 1(c), left].

However, the bulk topology is very different in both cases.
Therefore, surface measurements are not sufficient to de-
termine the bulk topology and bulk measurements of P3

are needed. One such measurement would consist in em-
bedding a monopole with magnetic charge qm inside the
fractional TI [Fig. 1(d)] and measuring its electric charge
qe induced by the Witten effect [33–35].

Another possible ‘‘experiment’’ is to measure the ground
state degeneracy (GSD) on topologically nontrivial spatial
3-manifolds. Consider a fractional TI on amanifold�g � I
with �g a Riemann surface of genus g and I ¼ ½0; L� a
bounded interval, where L is the sample ‘‘thickness’’ and
the two copies of�g (at each end of I) are the two bounding
surfaces. We first discuss contributions to the GSD arising
solely from the boundary, and comment on bulk contribu-
tions later on. A noninteracting TI with a � ¼ 1

3 Laughlin

state deposited on both surfaces is described by two inde-
pendent CS theories [2,36] and has a GSD of 3g (mg for
� ¼ 1

m ) on each surface for a total GSD of ð3gÞ2 ¼ 32g. The

situation is different for a genuine fractional TI with P3 ¼
� 1

6 [Fig. 1(c), left]. To study the GSD we set the external

electromagnetic fields to zero in Eq. (5) and consider the
internal SUð3Þ � term. Assuming that the system stays
gapped as we take the limit of zero thickness L ! 0 where
the gauge fields a� on both surfaces become identified, the

system is described by a single SUð3Þk CS theory on �g

where the level k is the sum of the contributions from both
surfaces. If on both surfaces � goes to the same value out-
side the TI, then k ¼ 0 and there is no GSD. If � ¼ 0 on one
side and � ¼ 2� on the other, we have a SUð3Þ1 CS theory
with GSD 3g � 32g [36]. In addition to the boundary con-
tributions of the � term to the GSD, the gauge theory in the
bulk can have a nontrivial GSD even in the absence of
boundaries. For instance, the deconfined phase of
SUðN cÞ gauge theory has a GSD of N 3

c on T3 [37]. The
total GSD has in general both bulk and boundary contribu-
tions, and depends on the details of the gauge group.
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Note added.—After this Letter was originally posted,
fractional TI were further investigated by B. Swingle
et al. [38].

[1] X. L. Qi and S. C. Zhang, Phys. Today 63, No. 1, 33 (2010).
[2] S. C. Zhang, Int. J. Mod. Phys. B 6, 25 (1992).
[3] D. J. Thouless et al., Phys. Rev. Lett. 49, 405 (1982).
[4] J. E. Moore, Nature Phys. 5, 378 (2009).
[5] M. Z. Hasan and C. L. Kane, arXiv:1002.3895.
[6] B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science

314, 1757 (2006).
[7] M. König et al., Science 318, 766 (2007).
[8] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802

(2005); 95, 226801 (2005).
[9] B. A. Bernevig and S. C. Zhang, Phys. Rev. Lett. 96,

106802 (2006).
[10] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98,

106803 (2007).
[11] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306(R)

(2007).
[12] S. C. Zhang and J. P. Hu, Science 294, 823 (2001).
[13] B. A. Bernevig et al., Ann. Phys. (N.Y.) 300, 185 (2002).
[14] X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78,

195424 (2008).
[15] A.M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev.

Lett. 102, 146805 (2009).
[16] A. Karch, Phys. Rev. Lett. 103, 171601 (2009).
[17] Z. Wang, X. L. Qi, and S. C. Zhang, New J. Phys. 12,

065007 (2010).
[18] M. Levin andA. Stern, Phys. Rev. Lett. 103, 196803 (2009).
[19] A. P. Schnyder et al., Phys. Rev. B 78, 195125 (2008).
[20] A. Kitaev, AIP Conf. Proc. 1134, 22 (2009).
[21] J. Maciejko et al., Phys. Rev. Lett. 105, 166803 (2010).
[22] J. K. Jain, Phys. Rev. B 40, 8079 (1989).
[23] X.-G. Wen, Mod. Phys. Lett. B 5, 39 (1991); Phys. Rev.

Lett. 66, 802 (1991); Int. J. Mod. Phys. B 6, 1711 (1992);
Phys. Rev. B 60, 8827 (1999); B. Blok and X.-G. Wen,
Nucl. Phys. B374, 615 (1992).

[24] M. Barkeshli and X.-G. Wen, Phys. Rev. B 81, 155302
(2010).

[25] M. Levin and M. P.A. Fisher, Phys. Rev. B 79, 235315
(2009).

[26] This can be achieved either by adding additional colored
but electrically neutral matter or considering the special
case with only Abelian groups, N ðfÞ

c ¼ 1 for all f.
[27] E. Witten, Sel. Math. New Ser. 1, 383 (1995).
[28] For a recent discussion, see A. Kapustin and E. Witten,

arXiv:hep-th/0604151; S. Gukov and E. Witten, arXiv:
hep-th/0612073.

[29] Color neutral monopoles carry Uð1Þem magnetic charge
N c

e , and lead to �eff ¼ n�
N 2

c
, n 2 Z. However, monopoles

with smaller Uð1Þem magnetic charge 1
e are allowed but

also carry color magnetic charge [30], and lead to �eff ¼
n�
N c

, n 2 Z.
[30] E. Corrigan and D. Olive, Nucl. Phys. B110, 237 (1976).
[31] F. D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983); B. I.

Halperin, Phys. Rev. Lett. 52, 1583 (1984).
[32] Y. Ran, H. Yao, and A. Vishwanath, arXiv:1003.0901.
[33] E. Witten, Phys. Lett. B 86, 283 (1979).
[34] X.-L. Qi et al., Science 323, 1184 (2009).
[35] G. Rosenberg and M. Franz, Phys. Rev. B 82, 035105

(2010).
[36] X.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990);

X.-G. Wen and A. Zee, Phys. Rev. B 58, 15 717 (1998).
[37] M. Sato, Phys. Rev. D 77, 045013 (2008).
[38] B. Swingle et al., arXiv:1005.1076.

PRL 105, 246809 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

10 DECEMBER 2010

246809-4

http://dx.doi.org/10.1063/1.3293411
http://dx.doi.org/10.1063/1.3293411
http://dx.doi.org/10.1063/1.3293411
http://dx.doi.org/10.1063/1.3293411
http://dx.doi.org/10.1063/1.3293411
http://dx.doi.org/10.1142/S0217979292000037
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1038/nphys1294
http://arXiv.org/abs/1002.3895
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1126/science.294.5543.823
http://dx.doi.org/10.1006/aphy.2002.6292
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1103/PhysRevLett.103.171601
http://dx.doi.org/10.1088/1367-2630/12/6/065007
http://dx.doi.org/10.1088/1367-2630/12/6/065007
http://dx.doi.org/10.1103/PhysRevLett.103.196803
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1103/PhysRevLett.105.166803
http://dx.doi.org/10.1103/PhysRevB.40.8079
http://dx.doi.org/10.1142/S0217984991000058
http://dx.doi.org/10.1103/PhysRevLett.66.802
http://dx.doi.org/10.1103/PhysRevLett.66.802
http://dx.doi.org/10.1142/S0217979292000840
http://dx.doi.org/10.1142/S0217979292000840
http://dx.doi.org/10.1142/S0217979292000840
http://dx.doi.org/10.1142/S0217979292000840
http://dx.doi.org/10.1142/S0217979292000840
http://dx.doi.org/10.1142/S0217979292000840
http://dx.doi.org/10.1103/PhysRevB.60.8827
http://dx.doi.org/10.1016/0550-3213(92)90402-W
http://dx.doi.org/10.1103/PhysRevB.81.155302
http://dx.doi.org/10.1103/PhysRevB.81.155302
http://dx.doi.org/10.1103/PhysRevB.81.155302
http://dx.doi.org/10.1103/PhysRevB.81.155302
http://dx.doi.org/10.1103/PhysRevB.81.155302
http://dx.doi.org/10.1103/PhysRevB.81.155302
http://dx.doi.org/10.1103/PhysRevB.79.235315
http://dx.doi.org/10.1103/PhysRevB.79.235315
http://dx.doi.org/10.1007/BF01671570
http://arXiv.org/abs/hep-th/0604151
http://arXiv.org/abs/hep-th/0612073
http://arXiv.org/abs/hep-th/0612073
http://dx.doi.org/10.1016/0550-3213(76)90525-3
http://dx.doi.org/10.1103/PhysRevLett.51.605
http://dx.doi.org/10.1103/PhysRevLett.52.1583
http://arXiv.org/abs/1003.0901
http://dx.doi.org/10.1016/0370-2693(79)90838-4
http://dx.doi.org/10.1126/science.1167747
http://dx.doi.org/10.1103/PhysRevB.82.035105
http://dx.doi.org/10.1103/PhysRevB.82.035105
http://dx.doi.org/10.1103/PhysRevB.41.9377
http://dx.doi.org/10.1103/PhysRevB.58.15717
http://dx.doi.org/10.1103/PhysRevD.77.045013
http://arXiv.org/abs/1005.1076

