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The large mass of the ninth pseudoscalar meson, the �0, is believed to arise from the combined effects

of the axial anomaly and the gauge field topology present in QCD. We report a realistic, 2þ 1-flavor,

lattice QCD calculation of the � and �0 masses and mixing which confirms this picture. The physical

eigenstates show small octet-singlet mixing with a mixing angle of � ¼ �14:1ð2:8Þ�. Extrapolation to the
physical light quark mass gives, with statistical errors only, m� ¼ 573ð6Þ MeV and m�0 ¼
947ð142Þ MeV, consistent with the experimental values of 548 and 958 MeV.
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The relatively large mass of the ninth pseudoscalar
meson, the�0, provides a significant challenge for quantum
chromodynamics (QCD), the component of the standard
model which describes the interactions of quarks and
gluons. On a naive classical level, there are nine conserved
axial-vector currents. Given the vacuum breaking of the
symmetries which these currents generate, this should
imply the existence of nine Goldstone bosons, a conclusion
inconsistent with the large splitting between the 8 octet
mesons ��, �0, K�, K0, �K0, and � and the singlet �0 [1].
Unique among these nine currents, the U(1) axial-vector
current, corresponding to the singlet �0 meson, has an
anomalous divergence at the quantum level. However, to
arbitrary order in perturbation theory this anomalous di-
vergence vanishes at zero momentum, continuing to imply
that the masses of all nine pseudoscalar mesons should
vanish in the limit of a vanishing quark mass. It is only with
the discovery of instanton configurations with nontrivial
topology [2] that a mechanism [3] became available that
could explain the large �0 mass.

While these important developments suggest a possible
consistency between QCD and the value of the �0 mass, a
direct demonstration of the required anomaly-driven,
octet-singlet splitting has been lacking. In this Letter, we
present the first such demonstration in the realistic case of
three light dynamical quarks.

The critical role of disconnected diagrams in the study of
the � and �0 and the severe difficulties they introduce have
been recognized for more than 15 years [4,5]. Positivity
requires the quark propagators that appear in the connected

diagrams to decrease exponentially with increasing time
separation. For mesons this falloff roughly matches the
exponential time dependence of the massive, Euclidean-
space meson propagator, and good numerical signals can
be seen over a large range of times. For terms in which the
source and sink of the meson propagator are not joined by
quark propagators, the needed exponential decrease comes
from increasingly large statistical cancellations implying a
rapidly vanishing signal-to-noise ratio. These difficulties
have impeded earlier work [6–9] on this topic which
has employed indirect methods or not examined the physi-
cal case of up, down, and strange dynamical quarks; see
also Ref. [10].
Simulation details.—Our calculation uses the Iwasaki

gauge and domain wall fermion actions, a 163 � 32 space-
time volume with a fifth-dimensional extent of 16 and
� ¼ 2:13, giving an inverse lattice spacing 1=a ¼
1:73ð3Þ GeV [11]. We analyze three ensembles of gauge
configurations with light sea quark mass ml ¼ 0:01, 0.02,
and 0.03 [12]. (All dimensionful quantities are given in
lattice units except when physical units are declared.)
These values of ml yield pion masses of 421, 561, and
672 MeV, respectively. The 0.01 and 0.02 ensembles were
generated by using the physical strange quark mass ms ¼
0:032 [13]. The ml ¼ 0:03 ensemble was reported as
RHMC II in Ref. [11] with ms ¼ 0:04. For this ensemble
we use reweighting to change ms from 0.04 to 0.032 in 20
mass steps [14].
We use a Coulomb gauge fixed wall source and sink for

the quark propagators.Because of the difficultyof computing
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the disconnected graphs, large statistics are required.
Therefore, we calculate propagators for sources on each of
our 32 time slices. The large number of Dirac operator
inversions (32� 12) that must be performed on a single
gauge configuration is accelerated by computing the Dirac
eigenvectors with the smallest 35 (ml ¼ 0:01) or 25 (ml ¼
0:02; 0:03) eigenvalues and limiting the conjugate gradient
inversion to the remaining orthogonal subspace. This results
in a 60% speedup for ml ¼ 0:01. We study 300 configura-
tions separated by 10 molecular dynamics time units for
ml ¼ 0:01 and 0.02 and 150 configurations separated by 20
time units for ml ¼ 0:03.

We compute four Euclidean space correlation functions
between two pseudoscalar operators Ol and Os:

CðtÞ�� ¼ 1

32

X31

t0¼0

hO�ðtþ t0ÞyO�ðt0Þi; �;�2 fl; sg; (1)

summed over the 32 source locations. HereOs ¼ �s�5s and

Ol ¼ ð �u�5uþ �d�5dÞ=
ffiffiffi
2

p
, both SU(2) singlets.

The matrix CðtÞ can be expressed in terms of the
five amplitudes represented by the diagrams shown in
Fig. 1:

Cll Cls

Csl Css

� �
¼ Cll � 2Dll � ffiffiffi

2
p

Dls

� ffiffiffi
2

p
Dsl Css �Dss

 !
: (2)

This equation shows that neither Ol nor Os creates an
energy eigenstate of QCD. They mix with each other
through the disconnected diagram Dsl ¼ Dls. The usual
expectation that such disconnected graphs are small does
not apply here. Figure 2 shows these amplitudes versus
time for theml ¼ 0:01 ensemble. The disconnected graphs
decrease more slowly than the connected graphs, changing
the pattern of SU(3) flavor symmetry breaking.

Inserting a sum over states into Eq. (1) and assuming this
sum is dominated by the � and �0 for large t, we obtain

CðtÞ ¼ ATDðtÞA; (3)

where the overlap matrix A is given by

A ¼ h�jOlj0i h�jOsj0i
h�0jOlj0i h�0jOsj0i

� �
; (4)

and DðtÞ is a diagonal matrix with elements e�m�t and
e�m�0 t. We chose A real, possible because CðtÞ is real.
Now define a second operator basis with definite SU(3)

properties: the octet O8 ¼ ð �u�5uþ �d�5d� 2�s�5sÞ= ffiffiffi
6

p
and the singlet O1 ¼ ð �u�5uþ �d�5dþ �s�5sÞ= ffiffiffi

3
p

. We
will use the Roman indices a and b, for these operators,
e.g., fOaga¼8;1, to distinguish them from the earlier basis

fO�g�¼l;s. Equations analogous to Eqs. (1), (3), and (4) will

be obeyed if this second basis with ab 2 f8; 1g is used.
We can determine the two masses and the four real

elements of the matrix A by fitting our data to Eq. (3)
over an appropriate range of time t. To determine this range
we examine the product:

Cðt0Þ�1CðtÞ ¼ A�1Dðt� t0ÞA; (5)

implying Cðt0Þ�1CðtÞ is similar to a diagonal matrix whose
eigenvalues are exponentials of the masses of interest. We
find the best results if t� t0 is large, giving a clean sepa-
ration of the larger, more accurate � eigenvalue and the
smaller eigenvalue associated with the noisy �0. Figure 3
shows the eigenvalues obtained from Eq. (5). Here we plot
the logarithm of the ratio of each eigenvalue evaluated at t
and tþ 1 with t0 ¼ 2. The choice t0 ¼ 2 and 3 � t � 7
gives a recognizable plateau for m� and m�0 .

�� �0 mixing.—It is customary to treat the physical �
and �0 states as mixtures of the pseudoscalar octet and
singlet states which appear in the SU(3) symmetric limit
and to introduce an angle � which specifies this mixing. In
the present calculation we can examine the validity of this
mixing model and attempt to determine �. Consider the
SU(3) symmetric limitml ¼ ms and let j8isym and j1isym be

these lowest energy octet and singlet states with energies
E8 and E1. We justify this mixing model by assuming that
when ml � ms the only important effects are a subset of
those implied by first-order perturbation theory: first-order

l

l

s

s

l l s s

l s

FIG. 1. Five diagrams appearing in the � and �0 correlation
functions. They are CllðtÞ, CssðtÞ, DllðtÞ, DssðtÞ, and DlsðtÞ,
respectively, from left to right and top to bottom. The solid lines
are quark propagators and the solid circles �5 insertions.
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FIG. 2 (color online). Results for the five contractions which
enter the �� �0 correlator calculated by using the ml ¼ 0:01
ensemble.
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energy shifts and first-order mixing of states but only for
those cases enhanced by the relatively small energy de-
nominator E1 � E8. To zeroth order in ms �ml we can

write symhajObj0i ¼ Z1=2
a �ab, and we assume this relation

is unchanged by the first-order effects of ms �ml on the
vacuum state—again neglecting mixing not enhanced by
the factor 1=ðE1 � E8Þ.

These assumptions imply that

j�i
j�0i

� �
¼ cosð�Þ � sinð�Þ

sinð�Þ cosð�Þ
� � j8isym

j1isym

 !
(6)

and that the overlap matrix A can be written

A ¼ Zð1=2Þ
8 cosð�Þ �Zð1=2Þ

1 sinð�Þ
Zð1=2Þ
8 sinð�Þ Zð1=2Þ

1 cosð�Þ

 !
; (7)

for A in the O8 �O1 basis. The columns of A are thus
orthogonal and, if O8 and O1 are normalized by multi-

plication by Z�1=2
8 and Z�1=2

1 , the resulting overlap matrix

Â will be orthogonal. Using the results below, we find for

the dot product between the columns of Â �0:016ð9Þ and
�0:012ð4Þ for the ml ¼ 0:01 and 0.02 ensembles,
respectively.

We can also extract an effective mixing angle �ðtÞ from
Eq. (5). This equation determines each row of A up to an
arbitrary constant. However, these two undetermined nor-

malization factors as well as the factors Z1=2
8 and Z1=2

1

cancel from the product A�1A�08=A�8A�01, a combination

which equals �tan2ð�Þ. The resulting angle is shown in
Fig. 4. The small value of � in the O8 and O1 basis
demonstrates the large role played by the disconnected
diagrams. Had we omitted the disconnected diagrams,
the matrix A would have been diagonal in the Ol and Os

basis giving sinð�Þ ¼ � ffiffiffiffiffiffiffiffi
2=3

p
or � ¼ �54:7�, very differ-

ent from our � ¼ �14:1ð2:8Þ�.

Fitting results.—We fit our four correlation functions
CabðtÞ in two steps. First, using 3 � t � 7 we dete-
rmine the two masses m� and m�0 and the four elements

of A. Second, we fix A to that determined in the first step
and fit the �� element of the transformed matrix
½ðATÞ�1CðtÞA�1��� over the larger range 5 � t � 15 to

determine more accurately m�. For each fit we minimize

�2 computed from the full covariance matrix, which in-
cludes the statistical correlations between each measured
propagator at each of the time separations used. We treat
each configuration as independent but check for autocor-
relations by grouping the data into blocks of size up to 10
and find consistent errors. As a test for long autocorrela-
tions, we compare the first and second halves of our data
and find consistent results. Using random sources,
Refs. [8,15] suggest these disconnected correlators show
large statistical excursions. We do not see this behavior.
Our standard wall sources give disconnected and con-
nected propagators which follow similar, properly sampled
distributions.
For theml ¼ 0:03 ensemble, we reweight the correlation

functions to change msea
s from 0.04 to 0.032 and list the

results in Table I. We then linearly interpolate the resulting
m2

� and m�0 with strange valence quark masses of 0.03 and

0.04 to the point mval
s ¼ 0:032. Table II lists the resulting
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FIG. 4 (color online). The �� �0 mixing angle �ðtÞ deter-
mined from Eq. (5) for theml ¼ 0:01 ensemble. While the errors
are large, the data are consistent with a single value of about
�10� for 3 � t � 7. [Note that �ðtÞ is undefined at t0 ¼ 2 and
off scale at t ¼ 0.]

TABLE I. Meson masses for the ml=ms ¼ 0:03=0:04 en-
semble and at the reweighted value msea

s ¼ 0:032 for two values
of the valence strange quark mass mval

s ¼ 0:03 and 0.04. Here
and below, only jackknife, statistical errors are given.

msea
s m� mval

s m� m�0

0.04 0.3907(9) 0.03 0.3907(9) 0.716(49)

0.04 0.4316(16) 0.713(67)

0.032 0.3899(11) 0.03 0.3899(11) 0.688(60)

0.04 0.4328(20) 0.694(126)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14

M
ef

f

t

η 
η’

FIG. 3 (color online). Effective mass plot for the � and �0
states from the ml ¼ 0:01 ensemble.
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masses for the octet states �, K, and � and the singlet
state �0 for each ensemble. The final column shows m�

determined by the Gell-Mann–Okubo formula 3m2
� þ

m2
� ¼ 4m2

K using our values for m� and mK. The good

agreement with this first-order formula is consistent with
our small octet-singlet mixing.

In Fig. 5, we show a linear extrapolation of m�0 and m2
�

as a function of m2
� to the physical value of m�, consistent

with next-to-leading-order chiral perturbation theory.
(Note that the curvature of the m� fit is barely visible.)

We find m� ¼ 573ð6Þ MeV and m�0 ¼ 947ð142Þ MeV,

where the errors are statistical. To verify our choice of
ms, we extrapolate the kaon mass and find the physically
consistent value 497.4(7) MeV. Also shown is a similar
linear extrapolation for � giving � ¼ �14:1ð2:8Þ�, in
agreement with the range �10� to �20� of phenomeno-
logical values [16].

We have described a 2þ 1-flavor calculation of the
masses and mixing for the � and �0 mesons, finding results
agreeing within their 15% error with experiment. The near

orthogonality of the mixing matrix Â is consistent with

physical states which are simple mixtures of SU(3) octet
and singlet states. Given our large statistical errors, we
have not analyzed the smaller systematic errors arising
from our single lattice spacing, large light quark masses,
and finite volume which other calculations [11,13,17] sug-
gest are� 4%, 5%, and 1%, respectively. However, to this
accuracy our calculation demonstrates that QCD can ex-
plain the large mass of the ninth pseudoscalar meson and
its small mixing with the SU(3) octet state.
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FIG. 5 (color online). Extrapolation of m�, m�0 (upper), and
� (lower) to the physical light quark mass (and a negative input
mass ml).

TABLE II. Masses in lattice units for the nonet of pseudoscalar mesons.

ml(conf) m� mK m� m�0 � m�(Gell-Mann–Okubo)

0.01(300) 0.2441(7) 0.3272(7) 0.3572(24) 0.600(45) �8:3ð2:6Þ� 0.3505(10)

0.02(300) 0.3251(6) 0.3633(6) 0.3787(11) 0.605(36) �5:5ð1:4�Þ 0.3752(9)

0.03(150) 0.3899(11) � � � 0.3988(13) 0.689(73) � � � � � �
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