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Understanding the origin of the accelerated expansion of the Universe poses one of the greatest

challenges in physics today. Lacking a compelling fundamental theory to test, observational efforts are

targeted at a better characterization of the underlying cause. If a new form of mass-energy, dark energy, is

driving the acceleration, the redshift evolution of the equation of state parameter wðzÞ will hold essential

clues as to its origin. To best exploit data from observations it is necessary to develop a robust and accurate

reconstruction approach, with controlled errors, for wðzÞ. We introduce a new, nonparametric method for

solving the associated statistical inverse problem based on Gaussian process modeling and Markov chain

Monte Carlo sampling. Applying this method to recent supernova measurements, we reconstruct the

continuous history of w out to redshift z ¼ 1:5.
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Little more than a decade has passed after supernova
observations first found evidence for the accelerated ex-
pansion of the Universe [1]. Since confirmed by different
probes, this remarkable discovery has been hailed as the
harbinger of a revolution in fundamental physics and cos-
mology. Cosmic acceleration demands completely new
physics—it challenges basic notions of quantum theory,
general relativity, and assumptions regarding the funda-
mental makeup of matter. Currently, the two most popular
explanations are a dark energy, usually modeled by a scalar
field, or a modification of general relativity on cosmic
length scales. In the absence of a compelling candidate
theory to explain the observations, the target of current and
future cosmological missions is to characterize the under-
lying cause for the accelerated expansion. In the case of
dark energy, the aim is to constrain the equation of state
parameterw ¼ p=� and its possible evolution. A deviation
from w ¼ const would provide clues pointing to the origin
of the accelerated expansion. (Currently, observations are
consistent with a cosmological constant, w ¼ �1, at the
10% level [2].)

In order to extract useful information from cosmological
data, a reliable and robust reconstruction method for wðzÞ
is crucial. Here, we introduce a nonparametric technique
based on Gaussian process (GP) modeling and Markov
chain Monte Carlo (MCMC) sampling, and apply it to
supernova data. GPs extend the multivariate Gaussian
distribution to function spaces, with inference taking place
in the space of functions. The defining property of a GP is
that the vector that corresponds to the process at any finite
collection of points follows a multivariate Gaussian distri-
bution. Gaussian processes are elements of an infinite
dimensional space, and can be used as the basis for a non-
parametric reconstruction method. GPs are characterized

by mean and covariance functions, defined by a small
number of hyperparameters [3]. The covariance function
controls aspects such as roughness of the candidate func-
tions and the length scales on which they can change; aside
from this, their shapes are arbitrary. Bayesian estimation
simultaneously evaluates the GP hyperparameters (so-
called to prevent confusion with the parameters that define
a parametric method) together with quantities of physical
interest.
For supernovae, the reconstruction task can be summa-

rized as follows. The data are given in the form of the
distance modulus �BðzÞ defined as:

�BðzÞ ¼ mB �MB ¼ 5log10

�
dLðzÞ
1Mpc

�
þ 25; (1)

where mB and MB are the apparent and absolute magni-
tudes. The luminosity distance dLðzÞ is connected to the
Hubble expansion rate HðzÞ, and thus to wðzÞ, via

dLðzÞ ¼ ð1þ zÞ c

H0

Z z

0

ds

hðsÞ
¼ ð1þ zÞ c

H0

Z z

0
ds

�
�mð1þ sÞ3

þð1��mÞð1þ sÞ3 exp
�
3
Z s

0

wðuÞ
1þu

du

���1=2
; (2)

where hðzÞ ¼ HðzÞ=H0. Note that supernovae cannot be
used to determine H0 in the absence of an independent
distance measurement. Thus it remains an unknown and
can be absorbed in a redefinition of the absolute magnitude:
MB ¼ MB � 5log10ðH0Þ þ 25. The H0 used to obtain
MB is not the physical value, but a certain fixed constant
assumed in the observational analysis. For the data set
analyzed below [2], H0 ¼ 65 km=s=Mpc. Since we will
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work with�B and not withmB directly, the numerical value
forMB does not enter in our analysis. We allow for a free
constant, �� in Eq. (1), accounting for the uncertainty in

the absolute calibration of the data, and for which we
choose a uniform prior between ½�0:5; 0:5�. We assume
spatial flatness as an ‘‘inflation prior’’; strong constraints
on spatial flatness exist from combining cosmic microwave
background (CMB) and baryon acoustic oscillation (BAO)
measurements [4]. The prior on�m is also informed by the
7-year WMAP analysis [4] for a wCDM model combining
CMB, BAO, andH0 measurements. Since our assumptions
onw are less strict thanw ¼ const:we broaden the nominal
range by a factor of 2, leading to a Gaussian prior with
mean 0.27 and standard deviation of 0.04.

Reconstruction is a classic statistical inverse problem for
the nonlinear (smoothing) operator of Eq. (2), where one
solves for the function wðzÞ and for the parameter �m,
given a finite set of noisy data for dLðzÞ. Different strategies
may be followed to arrive at a tractable formulation.
(i) Assume a parameterized form for wðzÞ and estimate
the associated parameters. This approach is the most com-
monly used currently; the parametric forms either assume
w ¼ const: or allow for a fixed redshift variation such as
w ¼ w0 � w1z=ð1þ zÞ, where w0 and w1 are constants
[5]. (ii) Pick a simple local basis representation for wðzÞ
(bins, wavelets), and estimate the associated coefficients
(effectively a piecewise constant description), using
Principal Component Analysis (PCA) if needed, to work
with eigenmodes defined as linear combinations of bins
[6,7]. (iii) Follow a procedure similar to (ii) without PCA—
but actually use (filtered) numerical derivatives to estimate
wðzÞ [8]. (iv) Use a distribution over (random) functions
that can represent wðzÞ and estimate the statistical proper-
ties thereof, given observed data. Methods (i), (ii), and
(iv) can all be carried out using a Bayesian viewpoint and
exploring posteriors by MCMC methods, whereas (iii) as
presented in the literature – represents a different class of
approach to the inverse problem. Taking numerical deriva-
tives is generally a difficult task and a corresponding error
theory seems hard to develop. Approach (i) can encounter
difficulties if wðzÞ has a nontrivial evolution. The finite
parameterization and the specific functional form assumed
can bias results for the temporal behavior of wðzÞ [9].
Methods (ii) and (iv) apply different philosophies—(ii)
applies a local view of the reconstruction (z bins), whereas
(iv) attempts to sample the posterior continuously in z. In a
mild sense, the choice of a piecewise continuous represen-
tation in (ii) of which,w ¼ const is just the one-bin limit—
can force an unphysical view of wðzÞ, since the actual wðzÞ
is not piecewise constant. In contrast, method (iv) while
fully nonparametric, is potentially more general and flex-
ible compared to the other methods.

Our new GP modeling-based approach is a realization of
method (iv). It enables the identification of nontrivial
redshift dependences in wðzÞ reliably, if they exist

(Ref. [10] shows examples based on simulated data). The
central idea is to assign prior probabilities to classes of
functions via GPs and to take advantage of the particular
integral structure of Eq. (2), again using GPs. Employing a
Bayesian approach to explore posterior distributions over
the functions via MCMC calculations we not only obtain a
family of continuous realizations for wðzÞ but at the same
time optimize the GP model hyperparameters, informed by
the actual data, comprehensively propagating all estima-
tion uncertainties.
One may wonder whether a general nonparametric re-

construction must involve taking a second derivative of the
data in some way. This is true only in a formal sense—the
approach described here does not involve any derivatives.
Instead, we invert an integral equation, ill-posed because
the operator to be treated is a complicated smoothing
operator involving two integrals. To make the problem
well-behaved we make mild continuity assumptions about
wðzÞ which are justified if the origin of dark energy is to be
described by a reasonable physical model.
As previously noted, a GP model assumes that

wðz1Þ; . . . ; wðznÞ, for any set of redshifts z1; . . . ; zn, follow
a multivariate Gaussian distribution specified by mean and
covariance functions [3]. Here we use a mean of negative
one as the prior and exponential family covariance func-
tions written as (� being a numerical constant):

Kðz; z0Þ ¼ �2�jz�z0j� :

The hyperparameters � 2 ð0; 1Þ and �, and the parameters
defining the likelihood, are determined by the data. The
value of � 2 ð0; 2� influences the smoothness of the GP
realizations: for � ¼ 2, the realizations are smooth with
infinitely many derivatives (this covariance function cor-
responds to using an infinite number of Gaussian basis
functions), while � ¼ 1 leads to rougher realizations
suited to modeling continuous non-(mean-squared)-
differentiable functions. We use both � values in our
analysis, the results being very similar. The form of the
covariance function is unrelated to the shape of the GP
sampling functions, as determined by the data, so no
particular behavior is assumed for wðzÞ. There is no loss
of generality in fixing the (statistical ensemble) GP mean,
as any variation imposed by the data appears in the covari-
ance function. Fixing the mean has the advantage of im-
proving the stability of the MCMC calculations (we
explored other means and found very similar results). We
stress that even though the mean is fixed, each GP realiza-
tion will actually have a different mean with a spread
controlled by � as shown in Fig. 1. The constant � has a
prior of Beta ð6; 1Þ and �2 has a vague Inverse Gamma
prior IGð6; 2Þ. The probability distribution of the Beta
prior is given by fðx;�;�Þ ¼ �ð�þ �Þx��1ð1� xÞ��1=
½�ð�Þ�ð�Þ� and for the IG prior by fðx;�;�Þ ¼
��x���1�ð�Þ�1 expð��=xÞ, with x > 0. We show the
priors for � and �2 and their posterior distribution in Fig. 1.
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Following the notation of Eq. (2) we set up the following
GP for w:

wðuÞ � GPð� 1; Kðu; u0ÞÞ:
Recall that we have to integrate over wðuÞ [Eq. (2)]:

yðsÞ ¼
Z s

0

wðuÞ
1þ u

du: (3)

We use the fact that the integral of a GP is also a GP with
mean and covariance dependent on the original GP [3].
Using that result, we set up a second GP for yðsÞ:

yðsÞ � GP

�
� lnð1þ sÞ; �2

Z s

0

Z s0

0

�ju�u0j�dudu0

ð1þ uÞð1þ u0Þ
�
:

The mean value for this GP is simply obtained by solving
the integral in Eq. (3) for the mean value of the GP for
wðuÞ, here taken to be negative one. As mentioned earlier,
even though the ensemble mean is fixed to a constant value
at any z, each GP realization is not mean-zero (over z). We
show the distribution of the mean for the different realiza-
tions in Fig. 1 demonstrating a wide spread between �2
and�0:6. In addition, we used simulated data with a time-
varying equation of state to check that the choice of the
mean does not bias the results.

We can now construct a joint GP for yðsÞ and wðuÞ:
yðsÞ
wðuÞ

� �
�MVN

� � lnð1þ sÞ
�1

� �
�11 �12

�21 �22

� ��
;

a multivariate normal (MVN) distribution with

�11 ¼ �2
Z s

0

Z s0

0

�ju�u0j�dudu0

ð1þ uÞð1þ u0Þ ; (4)

�22 ¼ �2�js�s0j� ; (5)

�12 ¼ �2
Z s

0

�ju�u0j�du
ð1þ uÞ : (6)

The mean for yðsÞ given wðuÞ can be found through the
following relation:

hyðsÞjwðuÞi ¼ � lnð1þ sÞ þ�12�
�1
22 ½wðuÞ � ð�1Þ�:

Now only the outer integral is left to be solved for in
Eq. (2), and this can be computed by standard numerical
methods. (Note that the computationally expensive double
integral for �11 as defined in Eq. (4) does not need to be
performed.) The GP prior can now be combined with a
likelihood function to obtain a posterior that can be
sampled by MCMC methods. Details of our GP-based
MCMC implementation are provided in the supplementary
material [11].
For our specific analysis we focus on a recent composite

supernova dataset, provided by Hicken et al. [2]. This
dataset combines the so-called Union dataset [12] with
new measurements of low redshift supernovae to form
the Constitution set. The dataset has been analyzed in
Ref. [2] using different light curve fitters for the supernova
light curves; our analysis uses results from the SALT fitter
(Table 1 in Ref. [2], which includes estimates for the error
for the distance modulus �B—the tables contain what is
referred to in Ref. [2] as the ‘‘minimal cut’’).
Our final results for wðzÞ are shown in Fig. 2. The upper

panel shows the results from a GP model with a Gaussian
covariance function (� ’ 2) while the results in the lower
panel are based on an exponential covariance function
(� ¼ 1). The results are very similar, the Gaussian covari-
ance function leading to a slightly smoother prediction.
The mean value of wðzÞ is very close to �1 at redshifts
close to zero and rises slightly at redshift z ¼ 1:5. Within
our estimated errors, the results are consistent with a
cosmological constant w ¼ �1. Note, however, that real-
izations of wðzÞ with nontrivial z dependence are not
excluded; as observations improve the allowed range of
variability will be further constrained. In Ref. [2] a com-
bined analysis of supernova data and baryon acoustic
oscillation measurements is carried out. Assuming w ¼
const:, the SALT-based dataset yields w ¼ �0:987þ0:066

�0:068

consistent with our findings.
To summarize, we have presented a new, nonparametric

reconstruction technique for the dark energy equation of
state and applied it to current supernova observations. The
GP-based method can be used to determine the most
probable behavior of wðzÞ and to infer how likely a target
trajectory is given the current data. Thus it can be used to
accept or reject classes of wðzÞmodels. The method allows
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FIG. 1 (color online). Priors (red lines) and posteriors (black
lines) for the GP hyperparameters � and �2. The lower left panel
shows the distribution of the GP mean. The lower right panel
shows the results for ��. The posteriors for different � choices

are very similar, and we show only the results for � ’ 2 here.
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adjusting of smoothness assumptions regarding wðzÞ;
priors on the GP hyperparameters control the allowed
arbitrariness (e.g., degree of differentiability). Robustness
of the results obtained can be checked by varying these
priors. Our results for wðzÞ are consistent with a cosmo-
logical constant, with no evidence for a systematic mean
evolution in w with redshift, although variations within our
error limits cannot be ruled out. We have carried out care-
ful tests to ensure that our choices of priors and hyper-
parameters do not alter the results. Our method possesses
several advantages: it avoids artificial biases due to re-
stricted parametric assumptions for wðzÞ, it does not lose
information about the data by smoothing it, and it does not
introduce arbitrariness (and lack of error control) in recon-
struction by representing the data using a certain number of
bins, or cutting off information by using a restricted set of

basis functions to represent the data. The technique can be
easily extended to fold in data from CMB and BAO ob-
servations; work in this direction is currently in progress.
The GP-based MCMC procedure can be integrated within
supernova analysis frameworks, e.g., SNANA [13] as a
cosmology fitter, following the general methodology pre-
sented in Ref. [14].
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FIG. 2 (color online). Nonparametric reconstruction of wðzÞ
based on GP modeling combined with MCMC. The upper panel
uses a Gaussian covariance function, the bottom panel, an
exponential covariance function. Both results are very close
and in agreement with a cosmological constant (black dashed
line). The dark blue shaded region indicates the 68% confidence
level, while the light blue region extends it to 95%.
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