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Geometric phases play a central role in a variety of quantum phenomena, especially in condensed
matter physics. Recently, it was shown that this fundamental concept exhibits a connection to quantum
phase transitions where the system undergoes a qualitative change in the ground state when a control
parameter in its Hamiltonian is varied. Here we report the first experimental study using the geometric
phase as a topological test of quantum transitions of the ground state in a Heisenberg XY spin model.
Using NMR interferometry, we measure the geometric phase for different adiabatic circuits that do not

pass through points of degeneracy.
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When a quantum system is subjected to cyclic adiabatic
evolution, it returns to its original state but may acquire a
geometric phase factor in addition to the dynamical one.
Berry made this surprising discovery in 1984 [1], so this is
also known as Berry’s phase. Later, this phase was gener-
alized in various directions to include a more general case
of noncyclic and nonadiabatic evolution [2], and even the
case of mixed states. Geometric phases (GPs) have been
observed in a wide variety of physical systems, e.g., in
spin-polarized neutrons [3], NMR [4], and superconduct-
ing systems [5]. Moreover, GPs have found applications in
many areas, such as molecular dynamics, many-body sys-
tems, and quantum computation [6,7].

Very recently, the GP of many-body systems has been
shown to be closely connected to quantum phase transi-
tions (QPTs), an important phenomenon in condensed
matter physics [8,9]. QPTs occur at zero temperature and
describe abrupt changes in the properties of the ground
state resulting from the presence of level crossings or
avoided crossings [10]. Recently, different methods related
to quantum information have been developed for character-
izing QPTs, including the fidelity [11], quantum entangle-
ment [12,13], and some other geometric properties [14].
The GP, which is a measure of the curvature of Hilbert
space, can reflect the energy-level structure to fingerprint
certain features of QPTs. Carollo and Pachos [8] demon-
strated that the GP difference between the ground state and
the first excited state encounters a singularity when the
system undergoes a QPT in the XY spin chain. Zhu [9]
revealed that a GP associated with its ground state exhibits
universality, or scaling behavior, around the critical point.
In addition to the study in the thermodynamical limit, it
was also shown that a GP could be used to detect level
crossings for a two-qubit system with an XY interaction
[15]. As a complement to these theoretical investigations, it
appears highly desirable to have experimental evidence for
these effects.
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In this Letter, we report the first experiment that shows
this important connection between a GP and the energy-
level structure (i.e., level crossing points) in a Heisenberg
XY spin model. In our experiment, the system Hamiltonian
changes adiabatically along a closed trajectory in parame-
ter space, while the system, which is in the ground state of
the Hamiltonian, accumulates a GP. Depending on the
region in parameter space, the resulting GP is zero or has
a finite value. These regions in parameter space are sepa-
rated by a line where the ground state of the system
becomes degenerate [15]. Using adiabatic state preparation
and NMR interferometry, we observe the transitions of the
GP on both sides of the level crossing point. This experi-
ment might be viewed as the first meaningful step to use a
GP as a fingerprint for observing QPTs.

Consider a one-dimensional spin-1/2 XY model in a
uniform external magnetic field along the z axis:

H oy = -3 (FE e + o)

J
A .
330

where % (v = x, y, z) denote the Pauli matrices for qubit k,
A is the strength of the external magnetic field, and vy
measures the anisotropy of the coupling strength in the
XY plane. This model is exactly solvable and can be
diagonalized by the Jordan-Wigner transformation,
Fourier transformation, and then Bogoliubov transforma-
tion [16]. However, it still contains a rich phase structure
[10]. Barouch and McCoy [17] investigated the statistical
mechanics of this model in the thermodynamical limit and
showed that a circle (A?> + y?> = 1) separates the oscilla-
tory phase (inside) from the paramagnetic or ferromagnetic
phase (outside). At the level crossing or avoided crossing
between the ground state and the first excited state, the
ground state changes discontinuously. As a result, the GP
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associated with the ground state also changes discontinu-
ously. Theoretical work has demonstrated the close rela-
tion between GPs and the energy-level structures, thereby
revealing the ground-state properties [8,9], even in the two-
qubit case [15].

We now consider the GP that results in this system if the
Hamiltonian rotates around the z axis, FH Ay, @)=
UH$)H (L y)U.(p) with U,(¢) = @>7 [8].
JH has the same spectrum as JH, independent of ¢.
Here we study a minimal model of two qubits coupled by

an XY-type interaction [15]. The eigenvalues of HH are *+1
and *r, where r = 4/A? + y2. The ground state is

L(jo1) +110) r<i

) 1
cos?100) + sinf e~ 2¢|11) r>1, 0

() =
where tanf = y/A. For r <1, the ground state is thus
invariant; for r =1, it is doubly degenerate; and for
r>1, it is spanned by the two states [00) and |11), with
coefficients that depend on the angle 6.

If we let the Hamiltonian travel along a cyclic path in the
parameter space (A, y, ¢), we can consider the subspace
spanned by |00) and |11), which contains the ground state,
as a pseudospin 1/2, where the spin evolves in an effective
magnetic  field B = r(sinf cos2 ¢, sinf sin2 ¢, cosh).
Using the standard formula B, = ifg(‘l’g|8¢|‘Pg> [1],
the ground state accumulates a GP,

0 r<l
’Bg(d):o_bw):{ﬂ'(l—cos&) r>1.

As shown in Fig. 1(a), it is useful to represent the trajectory
in a parameter space spanned by y cos(2¢), v sin(2¢), and
A. Here, the sphere with radius » = 1 marks the points
where the Hamiltonian is degenerate. Inside this sphere
(r <'1), the GP vanishes, while it has a finite value that
depends on the opening angle 6 of the cone subtended by the
circuit when r > 1. A special case is the XX spin model (i.e.,
v = 0). Here, the GP always vanishes, because the opera-
tion U, does not change the Hamiltonian of the system.
While we are considering here only a minimal two-spin
model, the ground state and the ground-state energy of the
XY model in the thermodynamic limit are similar [17].
When the system undergoes cyclic adiabatic evolution

2

along H , there will also be an additional dynamic phase
generated, relative to the instantaneous energy of the sys-
tem, besides the GP. Hence, in order to acquire the pure
geometric part, we have to eliminate the dynamical con-
tribution. To eliminate the dynamical contribution to the
phase shift, we combine two experiments with the closed
paths C and C [2], which generate the same geometrical
phases, but opposite dynamical phases. The two trajecto-
ries have the same geometrical shape (cones), but their
Hamiltonians J{ and —ZH{, and thus their dynamical
phases, add to zero. During the first period, the
Hamiltonian H (A, vy, ¢) follows the closed curve C in
the parameter space r = (r, 6, ¢), with ¢ changing from

TimeZ

C<‘;‘:'\

T05(20)
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FIG. 1 (color online). (a) Parameter-space representation of
the cyclic adiabatic evolutions that generate the GP. Two closed
paths C and C, related by inversion symmetry, were combined
for observing a purely GP. The cycles are horizontal; i.e., A is
constant and vy is constant. The observed GP depends on the
angle @ if the circles are outside the sphere r=1 (shown in
black) and vanish if the curves are inside the sphere. (b) Energy-
level diagram of the time-dependent HH ,,(s) for ASP (denoted
by the dashed lines), and the optimal function of the adiabatic
parameter s(f) (denoted by the solid line) calculated for a
constant adiabaticity factor, when y=0.5, A=0.9920. The
black dots represent the experimental values for the discretized
scan.

0 to 77, as schematically shown by the red circles (labeled
by C in the upper part) for A >0 in Fig. 1(a). During
the second period, the Hamiltonian —H = R]IZ(W)
H (=X, v, p)R.() follows the curve C, shown in the
lower part of Fig. 1(a). Here Ry, () = e {™/27t (k =1
or 2) rotates one of the two spins around the z axis. For the
circuit C, the resulting phase is B¢ = @(1 — cosf) — rT,
where T is the cycle time and we have assumed r > 1. For
C, B¢ = m(1 — cosh) + rT because the sign of the eigen-
value of the state I\I’g> changes for — 7. The sum of the
two phases, B¢ + B¢ = 2m(1 — cos), is thus purely geo-
metrical. If r <1, the dynamical component changes to
—T for C and T for C, while the GP vanishes.

To measure the GP, we use NMR interferometry [4,18].
This requires an ancilla qubit that is coupled to the system
undergoing the circuit. Figure 2 shows the experiment
schematically, including the adiabatic state preparation
(ASP) of the two-qubit system into the ground state of
the Heisenberg XY model, and the generation of a super-
position of the ancilla qubit by a Hadamard gate. The
subsequent adiabatic circuit U;, which is conditional on
the state of the ancilla qubit, implements the interferometer
U; = 10)X0], ® 1 + |1)1|, ® U;, where 1 represents a
4 X 4 unit operator and the unitary operator U is the cyclic
adiabatic evolution on the system qubits along the chosen
path C or C. The phase acquired during this path then
appears directly as a relative phase in the superposition
of the two ancilla states and can be measured in the NMR
spectrum of the ancilla spin [24].

The experiment was carried out on a Bruker Avance III
400 MHz (9.4 T) spectrometer at room temperature. The
three qubits 0, 1, and 2 in the quantum circuit (Fig. 2) were
represented by the 'H, 'C, and '""F nuclear spins in
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FIG. 2 (color online). Quantum circuit for measuring the
ground-state GP. H is the Hadamard gate, and following the
ASP, the operation U; performs a cyclic adiabatic evolution of
the system qubits (1 and 2), conditionally, when the ancilla path
qubit 0 is in the state |1).

diethyl-fluoromalonate. The relaxation time for all three
spinsis 7, = 1 s. The natural Hamiltonian of this system is
j-[NMR = — 212:0%0'2 + Zl<j%0'lzo'é, where (OF is the
Larmor frequency for spin i and J;; are the coupling
constants Jy; = 160.7 Hz, J;, = —194.4 Hz, and Jy, =
47.6 Hz. As the sample is not labeled, the relative phase
information on 'H at the end of the quantum circuit was
obtained through the '*C spectrum by a SWAP operation
between 13C and 'H [13].

In the experiment, we first initialized the system into the
pseudopure state pggy = 51 + €/000){000| by spatial
averaging [13], with the polarization € = 107>. Then we
prepared the ground state of the Heisenberg XY
Hamiltonian by an adiabatic passage: A rf pulse rotated
the spins from the z to the —x axis, i.e., to the ground state
of H = 3,0k, and then this Hamiltonian was slowly
changed into the target XY Hamiltonian J{ (A, y), always
fulfilling the adiabatic condition k << 1 [19]. This assures
that the resulting final state is close to the desired ground
state of the XY model. We optimized the time dependence
of the transfer by choosing H ,,(t) = [1 — s(t)]H o +
s(H)H with 0 = s(¢) = 1. The solid line in Fig. 1(b) shows
the corresponding time dependence for a constant . The
time dependence of s(¢) was chosen such that the adiaba-
ticity parameter « < 0.25 at all times.

In the experiment, the adiabatic transfer was per-
formed in discrete steps. The parameter s() therefore as-
sumes discrete values s,, with m=0,..., Mp, and for each
period of duration &, the corresponding Hamiltonian
H ,uls,,] was generated by a multiple pulse sequence:
UP((S) — e*i}[ad[sm]ﬁ — e*i[l*S,,,].'}'[O(S/Z)e*ism.’i'[()\,y)é
e ll=sn130(8/2 ¢+ 0(8%), via the use of Trotter’s for-
mula. 6 and M p were chosen by simultaneously considering
this stepwise approximation and the adiabaticity criterion.
The experimental values s,, for the discretized scan are
represented by black dots in Fig. 1(b). The theoretical
fidelity of this stepwise transfer process was >0.99, and
the experimental fidelity was >0.98.

After the preparation of the ground state, we applied the
cyclic adiabatic variation C or C. The corresponding
control operation U, or Ui was generated in the form
of a discretized adiabatic scan, as described for the ASP
part. Again, the parameters of the scan were optimized to

keep the fidelity >0.99. At the end of the scan, the accu-
mulated phase was measured.

Figure 3(a) shows two representative examples of the
resulting data: The spectra on the left-hand side correspond
to the states before the adiabatic circuit, after traversing the
circuit C, and after traversing C for the Hamiltonian pa-
rameters (A, y) = (0, 0.5). Clearly, in this situation, we are
within the sphere » = 1, so the ground state of the system is
715( |01) + |10)). This is verified by the experimental data,

where only the two resonance lines that correspond to the
states |01) and |10) of the system are visible. In the initial
state, the two lines appear in absorption; this corresponds to
the reference phase ¢ = 0. During the circuit C or C, which
is traversed over a time 7 = 3, the system should acquire a
phase 7. In the experimental data, we find that the lines are
inverted; a numerical analysis of the lines yields phases of
B,(C) = 170.6° and B,(C) = —173.0°. Thus the resulting
GP B, = [B,(C) + B,(0)]/2 = —1.2°, which is close to
the theoretically expected value of zero. The right-hand part
of Fig. 3(a) shows the corresponding results for an adiabatic
circuit outside of the sphere r = 1, where we expect to
observe a nonvanishing GP. In this case, we observe clearly
different phases for the two circuits, whose duration is now
T = 10.7. The measured phases are B3,(C) = —62.6° and
B,(C) = 114.2°, corresponding to a GP of 25.8°.

Figure 3(b) shows the GP measured for different pa-
rameters (A, ). The symbols show experimental data
points, while the curves that connect the points show the
theoretically expected GP as a function of the magnetic
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FIG. 3 (color online). (a) Experimental NMR spectra for two
specific parameter sets, P, for F{(0,0.5) and P, for
JH(0.878,0.5). From top to bottom, the spectrum corresponds
to the initial ground state [W,(A, y)), Uc|¥,(A, y)) for the
adiabatic path C and Ug|W,(A, y)) for the adiabatic path C.
(b) Measured ground-state GPs of the Heisenberg XY model
(points) for different parameter sets (A, y) compared to the
theoretical expectations (solid curves).
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field strength A, for a constant anisotropy parameter y. In
all cases, the observed GPs are compatible with the theo-
retically expected values: zero if the parameters (A, vy, ¢)
fall inside the sphere with radius » = 1, a sudden increase
to the maximum value if the parameters are just outside the
sphere, where the opening angle 6 of the cone subtended
by the circuit reaches a maximum, and then decreases as
the circuit C is moved away from the origin. Increasing
values of y correspond to larger circles C and thus bigger
values of . The points marked P and P, correspond to the
spectra shown in the upper part of the figure.

The relevant sources of experimental errors mainly came
from undesired transitions induced by the time-dependent
Hamiltonian, inhomogeneities of rf fields and static mag-
netic fields, imperfect calibration of rotations, and relaxa-
tion. We used a numerical optimization procedure to
minimize undesired transitions during the adiabatic pas-
sage. The duration of individual experiments ranged from
30 ms to 90 ms, short compared to the relaxation time
T, ~ 1s. The experimental error of the geometric phase
was less than 3°. The imperfection of the initial state would
also contribute to this. Using the experimentally recon-
structed density matrices for the initial states, we found
that this effect contributed = 1° to the errors.

In summary, we have detected the ground-state GP in the
Heisenberg XY model, after preparing the initial state by
an adiabatic passage. The Heisenberg XY model was si-
mulated by a multiple-pulse sequence, and the phase was
measured by NMR interferometry. Our proof-of-principle
experiment illustrates that the ground-state GP can serve as
a fingerprint of the energy-level crossing points that result
in a QPT in the thermodynamic limit. The ground-state GP
is a robust indicator that is immune to some experimental
imperfections [20] and provides an experimental method
that does not need to cross the critical point.

It would be very interesting to extend this experiment to
larger spin systems. For this, two issues are relevant: (i) the
effectiveness of the ASP and (ii) the realization of a
quantum circuit consisting of a quantum interferometer
and quantum simulation. For the first issue, although a
decisive mathematical analysis of the efficiency of ASP
is difficult, numerical simulations (up to 128 qubits) [21]
indicate a polynomial growth of the median runtime of an
adiabatic evolution with the system size. On the second
issue, quantum interferometry has become a mature tech-
nique, and the Heisenberg XY model has been efficiently
simulated by a universal quantum circuit only involving
the realizable single- and two-qubit logic gates [22].
Moreover, the diagonalization theory of the XY model
shows a valid energy gap between the two lowest energies,
which guarantees the viability of cyclic adiabatic evolution
to generate the ground-state GP, even in the thermody-
namic limit [8]. Recent research also shows that a 10-qubit
system already represents a good approximation to the
thermodynamical limit [23]. Therefore, the present scheme
is, in principle, applicable to larger spin systems, when the
technical difficulties in building a medium-scale quantum

computer are overcome. This significant connection be-
tween GPs and QPTs is not a specific feature of the XY
model, but remains valid in a general case [8,9]. We hope
that this experimental work will contribute to an improved
understanding of the ground-state properties and QPTs in
many-body quantum systems.
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