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We derive a theoretical description for dilute Bose gases as a loop expansion in terms of composite-field

propagators by rewriting the Lagrangian in terms of auxiliary fields related to the normal and anomalous

densities. We demonstrate that already in leading order this nonperturbative approach describes a large

interval of coupling-constant values, satisfies Goldstone’s theorem, yields a Bose-Einstein transition that

is second order, and is consistent with the critical temperature predicted in the weak-coupling limit by the

next-to-leading-order large-N expansion.

DOI: 10.1103/PhysRevLett.105.240402 PACS numbers: 03.75.Hh, 05.30.Jp, 67.85.Bc

Nearly a century after the first observation of the
lambda transition in liquid helium [1], a quantitative,
first-principles description of strongly correlated bosons
remains a challenge. After the transition was recognized
as the onset of superfluidity [2], the connection with Bose-
Einstein condensation (BEC) was proposed [3], but it was
Bogoliubov’s work [4] pointing out that the dispersion of
the elementary BEC excitations satisfy the Landau crite-
rion for superfluidity [5] that motivated weakly interacting
BEC studies to investigate superfluid properties. In weakly
interacting systems, the many-body properties do not de-
pend on the shape of the interaction potential but only on
the s-wave scattering length a0, and the boson fluid acts
as pointlike interacting particles [6].

Unlike liquid helium, cold atoms remain pointlike even
when the scattering length is tuned near a Feshbach
resonance. Then, strongly correlated cold-atom bosons offer
the exciting prospect of studying pointlike strongly interact-
ing bosons, possibly in the universal regime where the scat-
tering length greatly exceeds the interparticle distance and
the latter becomes the only relevant length scale [7]. This
hope appeared thwarted when it was shown that the three-
body loss rate in cold-atom traps scales asa40 near a Feshbach
resonance [8]. In accordance, the universal regime was
reached only in ultracold fermionic gases [9], where the
three-body loss is reduced by virtue of the Pauli exclusion
principle. However, the recent observation that three-body
losses are strongly suppressed in optical lattices when the
average number of bosons per site is two or less [10] rekin-
dles the prospect of studyingmedium and strongly correlated
cold-atom bosons. Novel cold-atom trap technologies that
produce stable, flat potentials bound by a sharp edge [11]
suggest the study of finite-temperature properties such as the
BEC transition temperature Tc and the superfluid to normal
fluid ratio and depletion, at fixed density �.

At finite temperature, the description of BECs remains a
challenge even in the weakly interacting regime. Standard
approximations such as the Hartree-Fock-Bogoliubov and

the Popov schemes generally fall within the Hohenberg
and Martin classification [12] of conserving and gapless
approximations, which implies that they either violate
Goldstone’s theorem or general conservation laws [13].
These approximations generally predict the BEC transition
to be a first-order transition, whereas we expect the tran-
sition to be second order [14].
In this Letter, we present a new theoretical framework

that describes a large interval of �1=3a0 values, satisfies
Goldstone’s theorem, and yields a Bose-Einstein transition
that is second order while also predicting reasonable
values for the depletion. Furthermore, this framework can
predict all experimentally relevant quantities within the
same calculation, determining fully consistently quantities
such as Tc, the collective mode frequencies, and the com-
pressibility (which characterizes the density profile in a
shallow trap). In contrast with other resummation schemes,
such as the large-N expansion [15] or functional renormal-
ization techniques [16], here we treat the normal and
anomalous densities on equal footing.
In our approach, we generate a one-parameter family of

equivalent Lagrangians. We choose this parameter to repro-
duce the one-loop result at the mean-field level in theweakly
interacting limit. Thus, we identify the optimal auxiliary-
field Lagrangian for the purpose of a systematic nonpertur-
bative expansion. Then, the critical temperature variation in
leading order is the same as the one found in the next-to-
leading-order large-N expansion.
In dilute bosonic gas systems, the classical action is

given by S½�;��� ¼ R
dxL½�;���, with dx � dtd3x

and the Lagrangian density

L½�;��� ¼ i@

2
f��ðxÞ½@t�ðxÞ� � ½@t��ðxÞ��ðxÞg

���ðxÞ
�
� @

2r2

2m
��

�
�ðxÞ � �

2
j�ðxÞj4: (1)

Here, � is the chemical potential, and the coupling is
� ¼ 4�@2a0=m. To account for the contributions of the
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normal and anomalous densities, we use the Hubbard-
Stratonovitch transformation [17] to introduce the real
and complex auxiliary fields (AF) �ðxÞ and AðxÞ, respec-
tively. We add to Eq. (1) the AF Lagrangian density [18,19]

Laux½�;��;�;A;A�� ¼ 1

2�
½�ðxÞ��cosh�j�ðxÞj2�2

� 1

2�
jAðxÞ�� sinh��2ðxÞj2; (2)

where � is the mixing parameter between the normal and
anomalous densities �ðxÞ and AðxÞ, respectively. The usual
large-N approximation [19] is obtained when � ¼ 0. Then,
the action becomes

S½�; J� ¼ S½�a; �; A; A
�; ja; s; S�

¼ � 1

2

ZZ
dxdx0�aðxÞG�1a

b½�; A�ðx; x0Þ�bðx0Þ

þ
Z

dxf½�2ðxÞ � jAðxÞj2�=ð2�Þ � sðxÞ�ðxÞ
þ S�ðxÞAðxÞ þ SðxÞA�ðxÞ þ j�ðxÞ�ðxÞ
þ jðxÞ��ðxÞg; (3)

with

G�1a
b½�; A� ¼ fG�1a

0 b þ Va
b½�; A�ðxÞg�ðx; x0Þ;

G�1a
0 b ¼

h0 0

0 h�0

 !
; h0 ¼ � @

2r2

2m
� i@

@

@t
��;

Va
b½�;A�ðxÞ ¼

�ðxÞ cosh� �AðxÞ sinh�
�A�ðxÞ sinh� �ðxÞ cosh�

 !
: (4)

Here, we introduced a two-component notation with
�aðxÞ ¼ f�ðxÞ; ��ðxÞg for a ¼ 1; 2. �ðxÞ and JðxÞ signify
the five-component fields and currents, respectively. The
generating functional for connected graphs is

Z½J� ¼ eiW½J�=@ ¼ N
Z

D�eiS½�;J�=@;

with S½�; J� given by Eq. (3). Performing the path inte-
gration over the fields �a, we obtain the effective action

	Seff½�;J;	�¼1

2

ZZ
dxdx0jaðxÞG½��abðx;x0ÞjbðxÞ

þ
Z
dx

�
�iðxÞ�iðxÞ

2�
�SiðxÞ�iðxÞ

� @

2i
Trln½G�1�

�
;

where �iðxÞ ¼ f�ðxÞ; AðxÞ= ffiffiffi
2

p
; A�ðxÞ= ffiffiffi

2
p g and SiðxÞ ¼

fsðxÞ; SðxÞ= ffiffiffi
2

p
; S�ðxÞ= ffiffiffi

2
p g. The small parameter 	 allows

us to perform the remaining path integration over �i by
using the stationary-phase approximation. As shown in
Ref. [18], 	 counts loops in the AF propagator in analogy
with @ and provides the loop expansion of the effective
action in terms of � propagators. Next, we expand the
effective action about the stationary points �i

0ðxÞ, defined
by �Seff½�; j�=��iðxÞ ¼ 0. Hence, we obtain

�0ðxÞ
�

¼
�
j�0ðxÞj2 þ @

2i
Tr½Gðx; xÞ�

�
cosh�þ sðxÞ;

A0ðxÞ
�

¼
�
�2

0ðxÞ þ
@

i
G2

1ðx; xÞ
�
sinh�þ SðxÞ:

We emphasize that both �0 and A0 include self-consistent
fluctuations. Expanding the effective action about the
stationary point, we write

Seff½�;J�¼Seff½�0;J�þ1

2

ZZ
d4xd4x0D�1

ij ½�0�ðx;x0Þ
�½�iðxÞ��i

0ðxÞ�½�jðx0Þ��j
0ðx0Þ�þ��� ; (5)

where D�1
ij ðx; x0Þ is given by the second-order derivatives:

D�1
ij ½�0�ðx; x0Þ ¼ �2Seff½�a�

��iðxÞ��jðx0Þ
���������0

;

evaluated at the stationary points. By keeping the Gaussian
fluctuations and Legendre transforming, the one-particle
irreducible graph generating functional

�½�� ¼
Z

dxj
ðxÞ�
ðxÞ �W½J�

¼ 1

2

ZZ
dxdx0�aðxÞG�1½��abðx; x0Þ�bðx0Þ

�
Z

dx

�
�iðxÞ�iðxÞ

2�
� @

2i
Trfln½G�1½��ðx; xÞ�g

� @	

2i
Tr ln½D�1

ii ½��ðx; xÞ�
�
þ � � � (6)

is the negative of the classical action plus self-consistent
one-loop corrections in the �a and �i propagators.
To leading order in the AF loop expansion (LOAF), one

sets 	 ¼ 0 in the right-hand side of (6). The static part of
the effective action per unit volume is

Veff½�� ¼ ð� cosh���Þj�j2 � 1

2
ðA��2 þ A��2Þ sinh�

� �2 � jAj2
2�

þ @

2i
Trfln½G�1½���g: (7)

Translating (7) to the imaginary time formalism, we find

@

2i
Tr ln½G�1½��� ¼

Z d3k

ð2�Þ3
�
!k

2
þ 1

�
ln½1� e��!k�

�
;

where !2
k ¼ ð	k þ � cosh���Þ2 � jAj2sinh2� and

	k ¼ k2=ð2mÞ. At the minimum, we have

�Veff½��
���

���������0

¼ð�cosh���Þ�0�Asinh���
0¼0: (8)

Using the Uð1Þ gauge symmetry, we choose �0 to be real.
Then, A is real and the dispersion !2

k ¼ 	kð	k þ 2A sinh�Þ
represents the Goldstone theorem. Next, we set sinh� ¼ 1,
such that !k reduces to the Bogoliubov dispersion

!k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	kð	k þ 2��2

0Þ
q

in the limit of vanishing quantum

fluctuations in the anomalous density. We note that the
leading order in the large-N expansion corresponds to
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� ¼ 0. This leads to the noninteracting (NI) dispersion
!k ¼ 	k, and we conclude that the large-N expansion is
not a suitable starting point, because it is incompatible with
the Bogoliubov spectrum.

By using standard regularization techniques [20], the
renormalized effective potential is written as

Veff½�� ¼ �0j�j2 � 1

2
ðA��2 þ A��2Þ � ð�0 þ�Þ2

4�

þ jAj2
2�

þ
Z d3k

ð2�Þ3
�
1

2

�
!k � 	k � �0 þ jAj2

2	k

�

þ 1

�
lnð1� e��!kÞ

�
;

where �0 ¼ ffiffiffi
2

p
��� and !2

k ¼ ð	k þ �0 þ jAjÞ�
ð	k þ �0 � jAjÞ. The gap equations, obtained from
�Veff½��=��i ¼ 0, are

A

�
¼ �2 þ A

Z d3k

ð2�Þ3
�
1þ 2nð!kÞ

2!k

� 1

2	k

�
;

�0 þ�

2�
¼ j�j2 þ

Z d3k

ð2�Þ3
�
	k þ �0

2!k

½1þ 2nð!kÞ� � 1

2

�
;

(9)

where nð!kÞ ¼ ½expð!k=kBTÞ � 1��1 is the Bose-Einstein
particle distribution. At the minimum of the effective
potential we have ð�0

0 � A0Þ�0 ¼ 0 [see Eq. (8)], and

we replace � by the physical density using � ¼
�@Veff½�0�=@� ¼ ð�0

0 þ�Þ=ð2�Þ. The density is used

to rescale Eqs. (9); the ensuing phase diagram problem

depends only on the dimensionless parameter �1=3a0, and

the coupling constant becomes � ¼ 8��1=3a0. In the bro-
ken symmetry phase, we have �0

0 ¼ A0 and the dispersion

relation !2
k ¼ 	kð	k þ 2�0

0Þ. The condensate density is

denoted by �0 ¼ �2
0. At weak coupling and T ¼ 0, our

results coincide with the Bogoliubov (one-loop) approxi-

mation [14]: � ¼ 8��a0½1þ ð32=3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a30=�

q
�.

We compare the LOAF results with the predictions of the
Popov bosonic approximation (PA) [21]. The PA is gener-
ally recognized as an accurate theoretical description of
experimental data in weakly coupled dilute trapped Bose
gases [22], as long as the densities of the condensed and
noncondensed atoms are comparable with each other. Un-
fortunately, the PA produces an artificial first-order phase
transition atTc. Formally, the PA is obtained fromEq. (9) by
setting A0 ¼ �0

0 ¼ ��0 and neglecting the quantum fluctu-

ations in the anomalous density. With this substitution, the
PA dispersion relation reads !2

k ¼ 	kð	k þ 2��0Þ.
In Fig. 1, we depict the temperature dependence of the

normal density �0 and anomalous density A at constant

�1=3a0, as derived by using the LOAF and PA approxima-

tions. For illustrative purposes, we set �1=3a0 ¼ 1 and

the temperature is scaled by its NI critical value T0 ¼
ð2�@2=mÞ½�=�ð3=2Þ�2=3, where �ðxÞ is the Riemann zeta
function. We identify two special temperatures, at Tc, where

the condensate density vanishes, and atT?, where the anoma-
lous density A vanishes. These temperatures are the same in
the PA formalism, but they are different in the LOAF. The
existence of a temperature range Tc < T < T? for which the
anomalous density A is nonzero despite a zero condensate
fraction � is a fundamental prediction of the LOAF. In this
temperature range, the dispersion relation is expected to
depart from the quadratic form predicted by the Popov
approximation for T > Tc. Above Tc, the solution of the
PA equations becomes multivalued, indicating that the sys-
tem undergoes a first-order phase transition atTc. In contrast,
the LOAF predicts a second-order transition.
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FIG. 1 (color online). Normal density �0 and anomalous den-
sity A from the LOAF and PA approximations, for �1=3a0 ¼ 1.
Tc and T? indicate vanishing condensate density �0 and anoma-
lous density A, respectively. The PA leads to a first-order phase
transition, whereas the LOAF predicts a second-order phase
transition. We have that Tc ¼ T? in the PA but not in the
LOAF. In the LOAF �0 and A are equal until Tc.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

T / Tc 0

1/3a = 1.00

1/3a = 0.10

noninteracting
boson gas

Popov
LOAF

Tc(LOAF)

Tc(Popov)

FIG. 2 (color online). Temperature dependence of the conden-
sate fractions from the LOAF and PA, compared with the NI
result, for �1=3a0 ¼ 0:1 and �1=3a0 ¼ 1. Because at Tc the PA
and NI dispersion relations are the same, the PA does not change
Tc relative to the NI case. The LOAF increases Tc.
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The temperature dependence of the condensate fraction
�0=� is depicted in Fig. 2 for two constant values of

the dimensionless parameter �1=3a0, together with the NI

result �0=� ¼ 1� ðT=T0Þ3=2. Again, we observe that the
LOAF exhibits the correct second-order BEC phase tran-
sition behavior. Moreover, the PA does not change Tc

relative to the NI case, because in the PA case we have
Tc ¼ T? and the PA and NI dispersion relations are the
same at Tc. The LOAF approximation predicts an increase
of Tc compared with the NI case.

As illustrated in Fig. 2, the LOAF and PA predictions
may differ greatly even for temperatures T � Tc. These
differences are enhanced by a strengthening of the inter-
action between particles in the Bose gas (a larger value of

�1=3a0 indicates stronger coupling). The leading-order
AF formalism produces a more realistic set of observables
away from the weak-coupling limit because of its non-
perturbative character. In contrast, the PA is appropriate
only in the case of a weakly interacting gas of bosons.
The former is made explicit by studying the LOAF pre-
diction for the relative change in Tc with respect to T0, as a

function of �1=3a0. The inset in Fig. 3 demonstrates that

in the weak-coupling regime, �1=3a0 � 1, the LOAF pro-
duces the same slope of the linear departure derived by
Baym, Blaizot, and Zinn-Justin [15] using the large-N
expansion, but at next-to-leading order. The LOAF correc-
tions to the critical temperature are due to the inclusion of
self-consistent fluctuations effects in the mean-field �0 and
A densities. A summary of �Tc=T0 theoretical predictions

is found in Ref. [14]. For �1=3a0 � 1, the LOAF predicts
that �Tc=T0 ! 0:396 when the system approaches the
unitarity limit. Despite the fact that most current experi-

ments probe only the �1=3a0 � 1 regime, future experi-
ments [11] may access the medium-to-strongly interacting
regime and verify this nonperturbative prediction.

In summary, in this Letter we introduce a new non-
perturbative resummation formulation for the BEC prob-
lem. At the mean-field level, this approach meets three
important criteria for a satisfactory mean-field theory for
weakly interacting bosons [14]: (i) the excitation spectrum
is gapless (to preserve Goldstone’s theorem), (ii) the LOAF
reduces to the known results from the Bogoliubov theory
at T ¼ 0 and weak coupling, and (iii) predicts a second-
order BEC phase transition.
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