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We investigate theoretically the collective dynamics of a suspension of low Reynolds number

swimmers that are confined to two dimensions by a thin fluid film. Our model swimmer is characterized

by internal degrees of freedom which locally exert active stresses on the fluid. We find that hydrodynamic

interactions mediated by the film can give rise to spontaneous continuous symmetry breaking (swarming),

to states with either polar or nematic homogeneous order. For dipolar swimmers, the stroke averaged

dynamics are enough to determine the leading contributions to the collective behavior. In contrast, for

quadrupolar swimmers, details of the internal dynamics are important in determining the bulk behavior.

In the broken symmetry phases, fluctuations of hydrodynamic variables destabilize order. Interestingly,

this instability is not generic and depends on the length scale.
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In nature, baths of micron-scale swimmers are found to
show remarkable out of equilibrium phenomena ranging
from anomalous diffusion and viscosity enhancement to
turbulent and swirl-like motion or self-organization into
complex dissipative structures [1–5]. They act as the inspi-
ration for man-made devices able to control and mix fluids
on micron scales. The search for the design principles of
such devices [6–8] remains in its infancy. However, simpli-
fied models of low Reynolds number swimmers should
prove to be a useful starting point for the theoretical under-
standing of this class of collective phenomena.

A very simple picture [9] then of a swimmer is an
internally driven vector oriented towards its direction of
motion. Theoretically, the dynamics of a collection of such
objects can be described, on long length and time scales, by
vector and tensor equations which are natural generaliza-
tions of equilibrium liquid crystalline hydrodynamics [10].
These active fluids involve the study of conserved and
broken symmetry variables that are nonequilibrium ana-
logues [11] of Goldstone modes. Previous studies on active
suspensions [12–15] have shown that fluctuations in these
modes destabilize ordered states. In 3D this instability is
termed generic, as it is independent of the length scale.
However, these descriptions are, in a fundamental sense,
phenomenological since another physical mechanism
[14,15] must be invoked to generate the ordered states
which have subsequently been shown to be unstable [12].

In this Letter, we introduce and study a self-contained
and microscopically defined physical system in which it is
possible to both generate homogeneously ordered states
and to examine their stability. This is provided by a ‘‘sus-
pension’’ of swimmers confined to two dimensions by a
viscous thin film [5]. In addition, the thin film geometry is
particularly accessible to experiments both from the point
of view of ease of observation and external activation.
We study analytically a model that directly links the col-
lective behavior to the microscopic dynamics. It combines

fluctuations, both active and passive, with the deterministic
motion due to activity and hydrodynamic interactions.
We find that the purely physical coupling mediated by

the thin film can give rise to local spontaneous breaking of
symmetry, and we identify the possible ordered states. The
system can have either nematic order, characterized by a
macroscopic axis of mean orientation n and symmetry
n ! �n, or polar order, with mean orientation axis p for
which p � �p. We then examine the stability of each of
the homogeneous phases to hydrodynamic fluctuations.
We find that the isotropic phase is stable. On the other
hand, as for the bulk 3D system, the homogeneous broken
symmetry states are destabilized by the hydrodynamic
modes of the system. Here, however the thin film weakens
this effect and the instabilities observed are length scale
dependent (i.e., not generic).
We restrict ourselves to a dilute solution, and we make

use of a mean field approximation and study the one-
particle distribution function, cðR; û; tÞ ¼ P

ih�ðRi �RÞ
�ðûi � ûÞi, the probability of finding a swimmer with
average orientation û at position R. This satisfies a
dynamic equation

@tc ¼ �r � JT �R �J R; J R ¼ �DRRcþ�c;

JT ¼ �DT � rcþ ð �v ûþVÞc; (1)

in terms of translational JTðR; û; tÞ and rotational
J RðR; û; tÞ currents, with R :¼ û ^ @

@û [16]. DT and DR

are, respectively, the translational (rotational) diffusion
tensor (constant) of the swimmer and represent both pas-
sive and active fluctuations. The deterministic quantities
are active, describing self-propulsion, �v û , and the trans-
lational V and rotational � velocities induced on a
swimmer due to the activity of others by hydrodynamic
interactions mediated by the film.
Thin film hydrodynamics.—The film is described as an

infinite incompressible two-dimensional layer of fluid with
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(2D) viscosity � filling the plane z ¼ 0 and coupled hydro-
dynamically to another incompressible bulk fluid of (3D)
viscosity �e which fills the region z � 0. To distinguish
between them we indicate the three-dimensional quantities
with a prime. We consider the fluid dynamics in the van-
ishing Reynolds number (Stokes) limit where inertia can be
neglected [17]. For the in-plane quantities, given an in-
plane force densityFðx; yÞ the velocity vðx; yÞ and pressure
pðx; yÞ satisfy [18]

�r2
?vþr?pþ�þ

e ���
e ¼�F; r? �v¼ 0; (2)

where r? ¼ ð@x; @yÞ is the 2D gradient operator. ��
e :¼

�e@zv
0j0� is the shear stress of the bulk fluid at the top

or bottom of the thin film; in the external region, z � 0,
the velocity v0ðx; y; zÞ and pressure p0ðx; y; zÞ satisfy the
Stokes equation, �er2v0 þ rp0 ¼ 0, r � v0 ¼ 0, where
r ¼ ðr?; @zÞ is a 3D gradient operator. The ratio of the
two- and three-dimensional viscosities introduces a length
scale s :¼ �=ð2�eÞ that governs two asymptotic regimes.
For r � s dissipation occurs almost entirely in plane and
hydrodynamic flow fields are quasi-two-dimensional while
at lengths r � s dissipation is mostly due to flow out of
plane, and the hydrodynamics is similar (but not identical)
to that in three dimensions.

The viscous drag coefficient on a flat disk of radius a
embedded in the film is � ¼ 4��=g, with g a function of
s=a [18]. On length scales large compared to a, the inter-
action between several disks lying in the film can be
approximated using pointlike forces at their centers and
the Green functionH of Eq. (2), corresponding to the flow
vðrÞ ¼ Hðr� r0Þ � f0 generated by a pointlike force f0 at

r0. The tensorHðrÞ ¼ s
�

R
d2k
ð2�Þ2 e

�ik�r ðI�k̂�k̂Þ
sk2þk

is the thin film

equivalent of the Oseen tensor [16]. In the following, we
work in the limit r � s [19,20].

We consider swimmerswith an average speed �vmoving in
a direction û which can be represented at large length scales
as a time-dependent force dipole that generates an associated
velocity field. We also consider swimmers for which the
force dipole is zero and the leading behavior is determined
by a force quadrupole. Hence the average force density of a
swimmer with mean position r� is of the form f�ðrÞ ¼
� �fd �L û ûiri�ðr� r�Þþ 1

2
�fq �L

2ûûiûjrirj�ðr� r�Þþ �� � ,
representing the dipole and quadrupole contributions, re-
spectively, where �L is the typical dimension of the swimmer.

For a concrete calculation, an explicit microscopic model
of a swimmer is required and we have used a three-disk
model of a swimmer [21]. Details of the model are reported
in [22]. This is characterized by a minimum number (2) of
degrees of freedom (of typical length l) that move in a
nonreciprocal fashion in time with frequency ! ¼ 2�

T to

achieve locomotion in the Stokes limit. In the following
we indicate the time average over a swimmer cycle period T
with an overbar �h ¼ 1

T

R
T
0 hðtÞdt. In the limit of small

sinusoidal oscillations of amplitude d around l it is possible
to obtain [21] the average self-propulsion velocity as

�v ¼ a0!d2

6l2
½1þ 1

�2 � 1
ð1þ�Þ2�, where a0 :¼ 4s

3g , and our con-

vention is that the swimmer move in the same direction of

û. For the average force we find �L ¼ l and �fd ¼ f da0
12l2

�
½ð1� � 1Þ þ 2ð 1

�2 � �Þ þ ð1��Þ
ð1þ�Þ2�, �fq ¼ f da0

36l2
½�1þ 2

�2 þ 2
�þ

2�þ 2�2 þ 2 �
ð1þ�Þ2�. Here f :¼ �!d is the force scale on

each degree of freedom of the swimmer. The parameter �,
which is the average ratio of the internal lengths, controls
the nature of the swimmer: the dipole is positive (pusher) for
� > 1, negative (puller) for � < 1, and zero (quadrupole)
for � ¼ 1.
The interaction between two such swimmers, which is the

origin of V, � in Eq. (1), is complex as each one is charac-
terized by periodic internal dynamics whose cycles may also
have different phases [23]. Here we will restrict ourselves to
swimmers that all have the same phase [23], and the limit
where the typical separation r between the swimmer centers
RA andRB is much larger than the typical dimension l of the
object. Dynamical quantities depending on hydrodynamic
interactions, such as translational v2b :¼ _R� � �vû� and

angular !2b :¼ û� ^ _̂u� velocities felt by each swimmer,
for� ¼ A; B are described togoodapproximation by thefirst
few terms of the expansion in spherical harmonics [15,23] of

the tensorH. To leading order, for swimmerAwefind v2b ¼
s�ð2Þ
2�� fð3B2 � 1Þ r̂

r2
�B ûB

r2
g þOð1=r3Þ and !2b ¼ s�ð2Þ

2�� �
f3ðA þ 2BC � 5AB2Þ ûA^r̂

r3
þ ð3AB � CÞ ûA^ûB

r3
gþ

Oð1=r4Þ. Here A :¼ ðr̂ � ûAÞ, B :¼ ðr̂ � ûBÞ, C :¼
ðûA � ûBÞ, where ûA and ûB are swimmer orientations. r

is the separation vector and �ð2Þ is related to the time-
dependent force dipole and scales asfl.We neglect the effect
of interactions on the internal dynamics and so do not address
synchronization effects [20].
The collective dynamics is obtained by a coarse-

graining procedure, first in time and then in space. The
velocities�, V in Eqs. (1) are obtained from the two body
velocities for swimmers with positions R and R0 and
orientations û and û0 as�

�
V

�
ðR; ûÞ ¼

Z
û0;R0

�!2b

�v2b

� �
ðR�R0; û; û0ÞcðR0; û0Þ (3)

where, as before, the overbar denotes time average over
the swimmer cycle. Order parameters such as local density
�, polarization P, and nematic orientation tensor S are
defined as moments of c:

�
P
S

0
@

1
AðR; tÞ ¼

Z
û

1
û

ðû � û� I=2Þ

0
@

1
AcðR; û; tÞ: (4)

Homogeneous ordered states.—These are states in
which c and its moments defined above do not vary with
position (denoted by c0, �0, P0, S0, respectively). Under
these conditions, the mean field velocities are�0 ¼ �0û ^
P0 þ �1û ^ S0 � û and V0 ¼ �TP

0, where the coefficients
�0, �1, and �T are averaged quantities that depend on the
microscopic details of each swimmer [24]. To leading
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order �0 	 f 1
ð16Þ2	3

s
�

d
l ð�2 � 1Þ and �1 	 f s

�
1
4	

a0d
l2

�
1

ð1þ�Þ2 ½13 ð�� 1Þ þ 5
12 ð�2 � 1

�Þ þ 1
6 ð�3 � 1

�2Þ�. They are

both positive for � > 1 (pushers) and negative for � < 1
(pullers). Inserting the expressions of�0 andV0 in Eq. (1),
taking the time derivative of Eq. (4), we obtain dynamic
equations for the moments of c0. Density is conserved;
hence, @t�

0 ¼ 0. The others are

@tS
0
ab¼�4DRS

0
abþ�0

�
P0
aP

0
b�

�ab

2
ðP0Þ2

�
þ�1

2
�0S0

ab;

@tP
0¼�DRP

0þ�0

2
�0P0þ

�
�1

2
��0

�
S0 �P0: (5)

Analysis of Eq. (5) shows that, when �0 or �1 are positive,
the system can undergo a bifurcation, that signals the
appearance of order. Hence pushers can give rise to order
whereas pullers cannot. The conditions�DR þ �0�0=2 ¼
0 and�4DR þ �0�1=2 ¼ 0 define two critical lines in the
space of parameters �0 and f, above which the instability
occurs [25]. The ratio �1=ð4�0Þ determines if the I-N or
I-P transition occurs at lower density (see Fig. 1 where we
have chosen parameters for which I-N occurs first). For
pullers �0 and �1 are negative and contribute to enhance
the noise (diffusion) in the system. For quadrupolar
swimmers, these leading order terms vanish, and in addi-
tion to higher order terms one must keep track of internal
mode dynamics of the swimmers. The leading order terms
in �0 are negative, so enhance diffusion while in �1 they
are positive and promote order. Hence, for this particular
microscopic prescription, we find no polar phase. We find

�1 	 f s
�

a0d
2

l3
7

384	3 ½1þ d
l ð2�þ 1Þ� [20]. A plot of the

critical line in this case is shown in the inset of Fig. 1.
Clearly, this transition occurs at higher densities than
dipolar swimmers since it is due to higher order terms.

We now discuss fluctuations in hydrodynamic variables
about isotropic and ordered states for dipole swimmers. As
in many active systems, we find that their effect is to

destabilize order [12]. In the following we consider the
deviations of the fields from their homogeneous values
given by �� ¼ �� �0, similarly for P and S. We intro-

duce Fourier transforms in the usual way as fðrÞ ¼R
k

1
ð2�Þ2 e

�ik�r ~fðkÞ, ~fðkÞ ¼ R
r e

ik�rfðrÞ.
Isotropic state.—In the homogeneous isotropic state

� ¼ �0, P0 ¼ S0 ¼ 0, and � is the only hydrodynamic

variable. Variables � ~Pk :¼ �~P � k̂, splay �~Skk, and bend

ð�~S?kÞa :¼ �~Sbck̂cð�ab � k̂ak̂bÞ show diffusive behavior.

From the resulting set of equations, density fluctuations are
linearly stable [14].
Polar state.—In the homogeneous polar state � ¼ �0,

P ¼ P0, and the hydrodynamic variables are � and the

director P̂. The orientation tensor is slaved to P, and given

by S ¼ SPP
2ðP̂ P̂� I

2Þ where SP is determined by Eq. (5).

The magnitudeP is not a hydrodynamic variable and relaxes
to a constant value on microscopic time scales. We set
P ¼ 1 in the following and study linear perturbations around

this state. Decomposing k̂ ¼ cos
P̂0 þ sin
k̂?, with

k̂? � P̂0 ¼ 0, to leading order in k we find that fluctuations

in density and director are coupled via splay ðk̂? � � ~̂PÞ,
giving a growing mode � with real part Reð�Þ 
 k sSP ��ð2Þ

8� �
cos2
ð2þ cos2
Þ and imaginary part, which determines
the propagation speed, Imð�Þ 
 �k �vffiffi

2
p j sin
j, as shown in

Fig. 2(a). When Reð�Þ is positive, fluctuations grow expo-
nentially, signalling an instability of the ordered state
due to hydrodynamic interactions, analogous to those found
in 3D [12]. However unlike those, the growth rate here scales
as k in the k ! 0 limit.
Nematic state.—A similar analysis can be performed

around the homogeneous nematic state (finite �0, S0). In
this case hydrodynamic variables are density, �, and ne-

matic orientation tensor, S ¼ Sðn̂ � n̂� I
2Þ. Again the

magnitude S relaxes fast and in the following will be set
to S ¼ 1. To leading order in k fluctuations of density �~�

and nematic director �~̂n are decoupled and splay fluctua-

tions have a real mode �
 k s ��ð2Þ
4� cos2
ð2þ �0 cos2
Þ.

For angles above �=4 destabilize the order, as shown in
Fig. 2(b). For quadrupolar swimmers the relevant terms
describing hydrodynamic interactions scale as k2 instead of
k. Their analysis is not reported here [20].
It is instructive to compare our results with previous

studies of swimmers in a 3D fluid [12,14,15]. Our analysis
starts from a microscopic model and ‘‘integrates out’’ the
fluid degrees of freedom to see the effect on the other
hydrodynamic modes. Alternatively, one may perform a
phenomenological analysis of an ordered state as in [12],
replacing the Stokes equation by Eq. (2); this yields quali-
tatively the same hydrodynamic instabilities that we have
presented above. In essence, the thin film model changes
the Fourier spectrum of the hydrodynamic kernel from k2

to kþ sk2, which in the limit sk � 1 reduces to 	 k.
This is the origin of the different scaling of the instability
here. In another contrast, hydrodynamic interactions of

-0.6 -0.3

I

0.3 0.60

4

P

N

I

0.3 0.6
|f|

20

40

ρ 0

N

I

+
quadrupoles

pusherspullers

ρ
0

f

Istable

unstable

stable

FIG. 1 (color online). Phase diagram showing homogeneous
states and their hydrodynamic stability. Isotropic-nematic and
nematic-polar transitions for dipolar swimmers. The transitions
can occur only for pushers. Force f is measured in arbitrary units.
Parameters are set to s

� ¼ DR ¼ 1, d ¼ 3a0, l ¼ 3d, 	 ¼ 2, and

� ¼ 1:2. In the inset is shown the I-N transition for quadrupolar
swimmers (same parameters except � ¼ 1).
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simplified far-field models of swimmers cannot lead to
homogeneous order (swarming) in 3D [15]. This can be
ascribed to a mathematical cancellation that occurs per-
forming angular integrals of spherical harmonics generated
by the hydrodynamic kernels. In the thin film limit consid-
ered here, this is circumvented by the confinement of the
swimmer directors to two dimensions. In addition, the
instability generated by activity in the film is ‘‘soft’’ in
the sense that it scales with k ! 0 in comparison to the 3D
case where it is independent of k (hard) to leading order
[12]. We can conclude that in comparison to 3D, hydro-
dynamic interactions between swimmers in a thin film
favor order but are still not strong enough to overcome
the destabilizing effect of activity. Finally, we note that our
approach is complementary to models where simple phe-
nomenological rules of interaction between swimmers are
used to study aspects of collective behavior [11,25,26]. In
contrast, here we ‘‘derive’’ such rules from a particular
microscopic model using a coarse-graining procedure
which is valid under a precise set of conditions.

The question of how to characterize the system beyond
the instability [14,26] remains open. This highlights a
fundamental theoretical issue. The instabilities of homoge-
neous ordered states seen here and in other nonequilibrium
active systems illustrate the limits of the Landau-Ginzburg
framework [12,15], which has been so successful in the
study of phase transitions in equilibrium systems. It might
be that alternative approaches, such as describing the
homogeneous state as dynamical rather than stationary, or
the development of a formalism in which hydrodynamic
and non-hydrodynamic variables are treated on the same
level, have to be considered.
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