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Parametric Excitation of a Magnetic Nanocontact by a Microwave Field
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We demonstrate that magnetic oscillations of a current-biased magnetic nanocontact can be parametri-
cally excited by a microwave field applied at twice the resonant frequency of the oscillation. The threshold
microwave amplitude for the onset of the oscillation decreases with increasing bias current, and vanishes
at the transition to the auto-oscillation regime. Theoretical analysis shows that measurements of para-
metric excitation provide quantitative information about the relaxation rate, the spin transfer efficiency,

and the nonlinearity of the nanomagnetic system.
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Several novel magnetic nanodevice architectures have
been recently proposed for the applications in information
technology [1,2], and for generation [3,4], sensing [5]
and manipulation [6-8] of electromagnetic signals. Their
implementation critically depends on our ability to
quantitatively characterize and control the dynamical
characteristics of nanomagnets. One of the most significant
recent developments that provided insight both into the
dynamical properties and the mechanisms of excitation of
nanomagnetic systems is the spin-torque ferromagnetic
resonance technique (ST-FMR) [9-11], an extension of
the common ferromagnetic resonance technique [12].

In ST-FMR, a microwave current with frequency f,
close to the resonance frequency f, of nanomagnet is
applied to the nanomagnetic device. A dc voltage is pro-
duced by mixing of the microwave current with the signal
generated by the dynamical response of the nanomagnet.
By modeling the dependence of this voltage on the applied
microwave frequency, one can extract information about
the characteristic frequencies, relaxation rates, and the spin
polarization of current.

Another method previously developed for the studies of
magnetic materials is the parametric pumping spectros-
copy, which utilizes microwave-frequency modulation of
the applied field to excite magnetic dynamics [12,13]. This
technique provides information complementary to FMR
about the dynamical properties of magnetic materials.
For instance, FMR measurements can be affected by si-
multaneous excitation of several dynamical modes, result-
ing in jumps of the resonant frequency and linewidth
broadening [10]. In contrast, parametric excitation has a
threshold nature, providing information about a single
excited mode at driving signals that are not too large.

In this Letter, we report the first observation of para-
metric excitation of a nanomagnet by a microwave mag-
netic field, applied at frequency f, equal to twice the
resonance frequency f;, of the nanomagnet. Although our
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nanomagnetic system is a nanocontact on a spatially
extended magnetic film with a continuous excitation
spectrum, only one dynamic mode is excited, enabling an
accurate determination of the specific parameters of this
mode. The dependence of parametric excitation on the
driving frequency is strongly asymmetric, which is caused
by the nonlinearity of the studied dynamical system. We
demonstrate that our observations can be quantitatively
described by the analytical model of a nonautonomous
nonlinear oscillator [14,15].

Based on our observations and analysis, we propose a
simple quantitative method for the characterization of
magnetic nanoelements. By measuring the threshold and
frequency range of parametric excitation, it is possible to
determine damping, spin-polarization efficiency, and cou-
pling coefficient to the microwave signal. In addition, by
measuring the frequency range of parametric synchroniza-
tion in the auto-oscillation regime, one can independently
determine the dynamic nonlinearity of the nanomagnet.
A significant advantage of the proposed parametric ap-
proach over the ST-FMR technique is provided by the
ability to spectroscopically measure the oscillation without
interference from the pumping signal, whose frequency
fo = 2f is significantly higher than f.

Measurements of parametric excitation were per-
formed in nanocontact devices with structure
Cu(40)Py(3.5)Cu(8)Co7oFes(10)Cu(60), fabricated on
sapphire substrates with electrical leads patterned into
coplanar microstrip lines. Here, thicknesses are in nano-
meters, and Py = NiggFe,,. The polarizing CoFe layer and
part of the Cu(8) spacer were patterned into an elliptical
shape with dimensions of 100 nm X 50 nm. The free
Py(3.5) layer was left extended with lateral dimensions
of several micrometers, resulting in a device geometry
similar to the point contacts studied before [4,16]. The
resistance of nanocontacts was close to 3 Ohms. The bias
field H = 1.1 kOe was oriented in the device plane, at
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45° with respect to the easy axis of the nanopatterned
CoFe layer. Measurements were performed at 5 K to
minimize thermal phase noise that reduces the efficiency
of parametric excitation.

The dynamical properties of nancontacts were charac-
terized by measurement of auto-oscillation induced at bias
current / > I, in the absence of the external driving signal.
Here, I, = 2.0 mA is the critical current for the onset of
auto-oscillation. The dependence of the auto-oscillation
frequency f, on current exhibited a slight increase just
above [, and a decrease at [ >2.7 mA [Fig. 1(a)].
The generated power monotonically increased with [/
[Fig. 1(b)], while the linewidth [Fig. 1(c)] exhibited a
nonmonotonic behavior consistent with the effects of non-
linarity on thermal line broadening [17,18].

The pumping microwave field h, || H was generated by
a microwave current i,, applied to a Cu microstrip fabri-
cated on top of the nanocontact and electrically isolated
from it by a SiO,(50) layer. Thus, the “parallel” para-
metric pumping geometry [12,13] was implemented in our
experiment. The dependence of the microwave field on the
ac current was calibrated by a procedure described else-
where [16,19]. To parametrically induce oscillations, a
microwave field at frequency f, = 2f, was applied to
the device. Parametric excitation is also expected for other
relations between the oscillation and the driving frequen-
cies, albeit with a lower excitation efficiency. Even the
largest field i, = 35.6 Oe rms in our measurements was
below the oscillation threshold at / = 0. However, we were
able to induce oscillations by simultaneously applying 4,
and a subcritical bias current / > 1 mA that partially com-
pensated the damping [20].

The frequency of the parametrically excited oscillations
was exactly equal to f,/2 [Fig. 2(a)]. At the excitation
threshold, i.e., the smallest pumping amplitude to induce
oscillation, it appeared at f, = 16.95 GHz = 2f,(1,).
Here, f,(I.) = 8.465 GHz is the oscillation frequency
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FIG. 1 (color online). (a) Generation frequency, (b) power,
(c) linewidth, and (d) dimensionless nonlinearity coefficient vs
bias current /, at h, = 0. Symbols in (a—c) are data. Curves in
(a), (b) are fits, in (c)—a calculation based on the nonlinear auto-
oscillator model (Eq. (95) in Ref. [14]), and in (d)—a calculation
from (a),(b), as described in the text.

just above the auto-oscillation onset, at &, = 0 [Fig. 1(a)].
The frequency at the threshold was independent of the bias
current | mA <1 <. = 2 mA or h,. Therefore, the para-
metrically excited oscillation mode is the same as the one
generated at the onset of auto-oscillation, for a wide range
of I <. and h,. This observation enabled us to directly
compare the dynamical characteristics extracted from
the parametric excitation to measurements of autonomous
dynamics (Fig. 1).

At driving amplitude &, just above the excitation thresh-
old, the maximum amplitude of the driven oscillation
is observed near zero detuning Af = f,/2 — fo(l.)
[Fig. 2(a)], while the linewidth has a minimum close to
this point [Fig. 2(b)]. At larger /,, the maximum amplitude
is shifted to higher frequencies, which can be related to the
nonlinear effects that also lead to the increase of the auto-
oscillation frequency above /- [Fig. 3(a)]. The oscillation
completely vanishes at frequencies f, < f, i, and f, >
femax- The frequency range of the parametric excitation is
proportional to the driving amplitude /4, above a threshold
value iy, = 8 Oe [dots in Fig. 2(c)]. We show below that
the slope of this dependence is determined mainly by the
intrinsic damping, in agreement with the general properties
of parametric excitation.

In the supercritical regime (I > 1..), the oscillation was
observed for all values of f,. At f, = 2f,, it became
synchronized with the microwave field, similarly to
the magnetic nanopillars [19]. The dependence of the
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FIG. 2 (color online). (a)—(c) Parametric excitation in the sub-
critical regime, at / = 1.7 mA, and (d) parametric synchroniza-
tion in the supercritical regime, at / = 2.3 mA. (a) Spectra of the
parametrically excited oscillations at the labeled values of f,, at
h, = 12.6 Oe rms. Curves are offset for clarity. (b) Full width at
half maximum (FWHM) of the oscillation peaks under the same
conditions as in (a); (c) Frequency boundaries of the parametric
excitation region vs h,. (d) Frequency boundaries of the para-
metric synchronization region vs /,. Symbols in (c) and (d) are
data, curves—calculations using Eqs. (4) and (6), respectively, as
described in the text.
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FIG. 3 (color online). (a) Symbols: measured microwave os-
cillation power vs pumping frequency, at h, = 12.6 Oe rms
(filled symbols) and &, = 22.5 Oe rms (open symbols) in the
subcritical regime, at / = 1.7 mA. Curves are calculations using
Eq. (2). (b) Threshold microwave amplitude vs bias current for
several values of detuning: Af = 0 (filled symbols and solid
curve), Af = 150 MHz (crosses and dashed curve), and Af =
—150 MHz (open symbols and dotted curve). Symbols are data,
curves are calculations using Eq. (3) for Af = 0, —150 MHz,
and Eq. (5) for Af = +150 MHz.

synchronization boundaries on &, [Fig. 2(d)] appears to be
similar to the parametric excitation data [Fig. 2(d)].
However, we show below that the synchronization interval
is determined by the dynamic nonlinearity of the device
rather than damping. In contrast to the parametric excita-
tion, the synchronization is observed at any 4., i.e. hg, = O.

The dependence of the oscillation power P on f,
is strongly asymmetric with respect to the sign of Af
[Fig. 3(a)]. At Af <0, the oscillation amplitude gradually
decreases to zero with increasing magnitude of detuning,
while at Af > 0 it initially increases with detuning and
then abruptly decreases to zero. The dependence of the
excitation threshold 4, on I [Fig. 3(b)] is also asymmetric
with respect to the sign of Af. For Af = 150 MHz, the
threshold linearly decreases with I. For A f = —150 MHz,
the threshold closely follows the A f = 150 MHz values at
I < 1.5 mA, while at larger / the decrease becomes slower.

To understand the origin of these unusual features of
parametric excitation of the nanomagnetic oscillator, we
utilize the model of a driven nonlinear oscillator developed
in Refs. [14,15]. The state of the oscillator is characterized
by a dimensionless complex amplitude ¢(z), whose evolu-
tion is determined by

? + iw(p)c + T'(U, p)c = Vh,e i@l c*, (1)
t

Here, p = |c|* is the dimensionless oscillation power,
w, =2mf,, o(p) =2mfo(I)[1+ &(p)] is the power-
dependent auto-oscillation frequency, V is the coupling
to the driving field &,, and I'(Z, p) is the total effective
damping given by the difference between the natural posi-
tive damping ', (p) = I'g[1 + n(p)] and the negative
damping I" (1, p) = T'y(I/1.)(1 — p) caused by the spin-
polarized current /.

The functions &(p) and n(p) characterize the nonline-
arities of the oscillation frequency and the natural

damping, respectively. They were determined by fitting
the data of Figs. 1(a) and 1(b) with Eq. (1), with the
right-hand side taken to zero. The applicability of the
model Eq. (1) was verified by an independent calculation
of the generation linewidth. The known functions £(p) and
1n(p) allowed us to determine the dimensionless power-
dependent nonlinearity coefficient v(I, p) =[dw(p)]/dp]l/
[oT'(1, p)/ o p] [Fig. 1(d)], and to analytically calculate the
generation linewidth in the active regime [Eq. (95) in
Ref. [14]]. This calculation took into account the Ohmic
heating of the nanocontact from 7 = 12 Kat/ = 2 mA to
T =20K at I = 3.5 mA [21]. The effective volume in-
volved in oscillation was assumed to be 1.8 times larger
than the volume of the free layer under the nanocontact.
A good agreement with the data over a large range of
I [curve in Fig. 1(c)], supports the applicability of our
nonlinear oscillator model to the studied magnetic point
contacts.

To analyze the mechanisms of parametric excitation, we
note that Eq. (1) admits a synchronous solution in the form
c(t) = Jpe '@/2*1V where p >0 is the oscillation
power, and ¢ is its phase relative to the driving signal.
Substituting this expression into Eq. (1) and multiplying
both sides by their complex conjugates, we obtain an
implicit expression for p

2
(o] +rep=vi. @
A solution to this equation exists for i, = hy,, where the
excitation threshold &y, corresponds to the minimum of
the left-hand side of Eq. (2). Depending on the parameters
of the model, this minimum can occur either at p = 0 or at
some finite power p; > 0. The former case corresponds to
the “soft” regime of parametric excitation, with the oscil-
lation power p gradually increasing from p = 0 with in-
creasing h, > hy,, whereas the latter case describes the
“hard” regime characterized by an abrupt jump of p
from zero to a finite value py.

Solving Eq. (2) in the soft regime, we obtain the thresh-
old microwave amplitude

Vi, = [Aw? + T3, 3)

and the boundaries of the parametric excitation region

W max/ min 26‘)0 * 2Vv2h§ - F%r 4

where Aw = 27Af = w,/2 — wy is the linear frequency
detuning and I'; = T'y(1 — I/1,) is the linear damping
reduced by the subcritical current /.

The linear oscillation frequency ), linear damping rate
Iy, parametric coupling coefficient V, and critical current
.. can be determined using Eq. (4) from the dependence of
the parametric excitation frequency interval on the driving
field. From the data of Fig. 2(c), we obtained wq/27 =
fo = 8.475 GHz, I'y = 1.31 ns™!' (corresponding to the
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Gilbert damping coefficient ag = 0.015), V =27
X3.31 MHz/Oe, and I, = 1.99 mA.

The hard regime of parametric excitation occurs when
the power-dependent detuning Aw(p) = w,/2 — w(p)
decreases with the increase of the oscillation power p.
Thus, for a given sign of the nonlinearity coefficient v,
the hard excitation takes place only on one side of the
resonance ®,/2 = w,. The threshold Aj in the hard re-

gime is approximately given by
[Aw + v(I,0)T]
NIE O

The experimental dependence of the auto-oscillation
frequency on [ exhibits an initial increase at I, <I <
2.7 mA, thus » >0, and therefore the hard regime of
parametric excitation at Aw > 0. The resulting asymmetry
of the dependence of the oscillation power on A w is clearly
seen in Fig. 3(a). The difference between the soft and the
hard regimes is also illustrated in Fig. 3(b): in the hard
regime at Af = 150 MHz, the parametric threshold line-
arly decreases with the bias current [Eq. (5)], while in the
soft regime at Af = —150 MHz it exhibits a nonlinear
dependence on current [Eq. (3)].

At I > I, the parametric excitation is replaced by the
parametric synchronization characterized by the synchro-
nization index r= w,/w =2 [19]. An approximate
expression for the frequency range of the parametric syn-
chronization can be obtained by using Taylor expansions of
w(p) and I'(Z, p) around the free-running power p = p, in
Eq. (2), yielding

W, max/ min 20)(1’0) * 2V1 + VZ(I) pO)Vhe~ (6)

This expression reasonably well describes the experimen-
tal data in Fig. 2(d), proving that measurements of the
parametric synchronization range can be used for the in-
dependent determination of the nonlinear coefficient » in
nanomagnetic oscillators. This result is especially impor-
tant for the studies of other potentially more complicated
dynamical systems such as magnetic nanopillars, where in
some cases several magnetic modes can be excited simul-
taneously [17], affecting the measurements of nonlinearity
in the autonomous regime.

To summarize, we have reported the first observation of
asymmetric parametric resonance in a current-biased mag-
netic nanocontact, and demonstrated that this phenomenon
can be utilized to determine dynamical properties of
magnetic nanoelements. We have also demonstrated that
the general model of a nonlinear oscillator [14] provides a
quantitative description of the observed autonomous
and nonautonomous (driven) nanomagnet dynamics. The
parametric measurements can be utilized as an efficient
characterization technique complementary to the ST-FMR

Vhll =~ &)

method for the studies of the dynamical properties of
nanoscale magnetic systems.
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