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Using a formulation of first-principles scattering theory that includes disorder and spin-orbit coupling

on an equal footing, we calculate the resistivity �, spin-flip diffusion length lsf , and Gilbert damping

parameter � for Ni1�xFex substitutional alloys as a function of x. For the technologically important

Ni80Fe20 alloy, Permalloy, we calculate values of � ¼ 3:5� 0:15 ��cm, lsf ¼ 5:5� 0:3 nm, and � ¼
0:0046� 0:0001 compared to experimental low-temperature values in the range 4:2–4:8 ��cm for �,

5.0–6.0 nm for lsf , and 0.004–0.013 for �, indicating that the theoretical formalism captures the most

important contributions to these parameters.
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Introduction.—The drive to increase the density and
speed of magnetic forms of data storage has focused at-
tention on how magnetization changes in response to ex-
ternal fields and currents, on shorter length and time scales
[1]. The dynamics of a magnetization M in an effective
magnetic field Heff is commonly described using the phe-
nomenological Landau-Lifshitz-Gilbert equation

dM

dt
¼ ��M�Heff þM�

� ~GðMÞ
�M2

s

dM

dt

�
; (1)

where Ms ¼ jMj is the saturation magnetization, ~GðMÞ is
the Gilbert damping parameter (that is, in general, a ten-
sor), and the gyromagnetic ratio � ¼ g�B=@ is expressed
in terms of the Bohr magneton �B and the Landé g factor,
which is approximately 2 for itinerant ferromagnets. The
time decay of a magnetization precession is frequently
expressed in terms of the dimensionless parameter � given

by the diagonal element of ~G=�Ms for an isotropic me-
dium. If a nonequilibrium magnetization is generated in a
disordered metal (for example, by injecting a current
through an interface), its spatial decay is described by
the diffusion equation

@2��

@z2
¼ ��

l2sf
(2)

in terms of the spin accumulation ��, the difference
between the spin-dependent electrochemical potentials
�� for up and down spins, and the spin-flip diffusion
length lsf [2,3]. In spite of the great importance of � and
lsf , our understanding of the factors that contribute to their
numerical values is, at best, sketchy. For clean ferromag-
netic metals [4] and ordered alloys [5] however, recent

progress has been made in calculating the Gilbert damping
using the torque correlation model [6] and the relaxation
time approximation in the framework of the Boltzmann
equation. Estimating the relaxation time for particular
materials and scattering mechanisms is, in general, a non-
trivial task, and application of the torque correlation model
to nonperiodic systems entails many additional complica-
tions and has not yet been demonstrated. Thus, the theo-
retical study of Gilbert damping or spin-flip scattering in
disordered alloys and their calculation for particular mate-
rials with intrinsic disorder remain open questions.
Method.—In this Letter we calculate the resistivity �,

spin-flip diffusion length lsf , and Gilbert damping parame-
ter � for substitutional Ni1�xFex alloys within a single
first-principles framework. To do so, we have extended a
scattering formalism [7] based upon the local spin density
approximation of density functional theory so that spin-
orbit coupling (SOC) and chemical disorder are included
on an equal footing. Relativistic effects are included by
using the Pauli Hamiltonian.
For a disordered region of ferromagnetic (FM) alloy

sandwiched between leads of nonmagnetic (NM) material,
the scattering matrix S relates incoming and outgoing
states in terms of reflection (r) and transmission (t) matri-
ces at the Fermi energy. To calculate the scattering matrix,
we use a ‘‘wave-function matching’’ scheme [7] imple-
mented with a minimal basis of tight-binding linearized
muffin-tin orbitals [8]. Atomic-sphere-approximation po-
tentials [8] are calculated self-consistently using a surface
Green’s function method, also implemented [9] with tight-
binding linearized muffin-tin orbitals. Charge and spin
densities for binary alloy A and B sites are calculated
using the coherent potential approximation (CPA) [10]
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generalized to layer structures [9]. For the transmission
matrix calculation, the resulting spherical potentials are
assigned randomly to sites in large lateral supercells sub-
ject to maintenance of the appropriate concentration of the
alloy [7]. Solving the transport problem using lateral super-
cells makes it possible to go beyond effective medium
approximations such as the CPA. Because we are interested
in the properties of bulk alloys, the leads can be chosen for
convenience, and we use Cu leads with a single scattering
state for each value of crystal momentum, kk. The alloy

lattice constants are determined using Vegard’s law, and
the lattice constants of the leads are made to match.
Though NiFe is fcc only for the concentration range 0 �
x � 0:6, we use the fcc structure for all values of x.

For the self-consistent surface Green’s function calcu-
lations (without SOC), the two-dimensional (2D) Brillouin
zone (BZ) corresponding to the 1� 1 interface unit cell
was sampled with a 120� 120 grid. Transport calculations
including spin-orbit coupling were performed with a
32� 32 2D BZ grid for a 5� 5 lateral supercell, which
is equivalent to a 160� 160 grid in the 1� 1 2D BZ. The
thickness of the ferromagnetic layer ranged from 3 to
200 monolayers of fcc alloy; for the largest thicknesses,
the scattering region contained more than 5000 atoms. For
every thickness of ferromagnetic alloy, we averaged over a
number of random disorder configurations; the sample to
sample spread was small, and typically only five configu-
rations were necessary.

Resistivity.—We calculate the electrical resistivity to
illustrate our methodology. In the Landauer-Büttiker for-
malism, the conductance can be expressed in terms of the
transmission matrix t as G ¼ ðe2=hÞTrfttyg [11,12]. The
resistance of the complete system consisting of ideal leads
sandwiching a layer of ferromagnetic alloy of thickness
L is RðLÞ¼1=GðLÞ¼1=GShþ2RifþRbðLÞ, where GSh¼
ð2e2=hÞN is the Sharvin conductance of each lead with N
conductance channels per spin, Rif is the interface resist-
ance of a single NMjFM interface, and RbðLÞ is the bulk
resistance of a ferromagnetic layer of thickness L [7,13].
When the ferromagnetic slab is sufficiently thick, Ohmic
behavior is recovered whereby RbðLÞ��L, as shown in
the inset to Fig. 1 for Permalloy (Py¼Ni80Fe20), and the
bulk resistivity � can be extracted from the slope of RðLÞ
[14]. For currents parallel and perpendicular to the mag-
netization direction, the resistivities are different and have
to be calculated separately. The average resistivity is given
by ��¼ð�kþ2�?Þ=3, and the anisotropic magnetoresis-

tance ratio (AMR) is ð�k��?Þ= ��.
For Permalloy we find values of �� ¼ 3:5� 0:15 ��cm

and AMR ¼ 19� 1%, compared to experimental low-
temperature values in the range 4:2–4:8 ��cm for ��
and 18% for AMR [15]. The resistivity calculated as a
function of x is compared to low-temperature values from
the literature [15] in Fig. 1. The plateau in the calculated
values around the Py composition appears to be seen in the

experiments by Smit and Jaoul et al. [15]. The overall
agreement with previous calculations is good [16]. In spite
of the smallness of the SOC, the resistivity of Py is under-
estimated by more than a factor of 4 when it is omitted,
underlining its importance for understanding transport
properties.
Three sources of disorder which have not been taken

into account here will increase the calculated values of �:
short range potential fluctuations that go beyond the single
site CPA, short range strain fluctuations reflecting the
differing volumes of Fe and Ni, and spin disorder. These
will be the subject of a later study.
Gilbert damping.—Recently, Brataas et al. showed that

the energy loss due to Gilbert damping in an NMjFMjNM
scattering configuration can be expressed in terms of the
scattering matrix S [17]. Using the Landau-Lifshitz-Gilbert
equation (1), the energy lost by the ferromagnetic slab is

dE

dt
¼ d

dt
ðHeff �MÞ ¼ Heff � dMdt ¼ 1

�2

dm

dt
~GðMÞdm

dt
;

(3)

where m ¼ M=Ms is the unit vector of the magnetization
direction for the macrospin mode. By equating this energy
loss to the energy flow into the leads [18] associated with
‘‘spin pumping’’ [19],

IPump
E ¼ @

4�
Tr

�
dS

dt

dSy

dt

�
¼ @

4�
Tr

�
dS

dm

dm

dt

dSy

dm

dm

dt

�
; (4)

the elements of the tensor ~G can be expressed as

~Gi;jðmÞ ¼ �2
@

4�
Re

�
Tr

�
@S

@mi

@Sy

@mj

��
: (5)

Physically, energy is transferred slowly from the spin
degrees of freedom to the electronic orbital degrees of
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FIG. 1 (color online). Calculated resistivity as a function of the
concentration x for fcc Ni1�xFex binary alloys with (solid line)
and without (dashed-dotted line) SOC. Low-temperature experi-
mental results are shown as symbols [15]. The composition
Ni80Fe20 is indicated by a vertical dashed line. Inset: resistance
of CujNi80Fe20jCu as a function of the thickness of the alloy
layer. Dots indicate the calculated values averaged over five
configurations, while the solid line is a linear fit.
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freedom, from where it is rapidly lost to the phonon
degrees of freedom. Our calculations focus on the role of
elastic scattering in the rate-limiting first step.

Assuming that the Gilbert damping is isotropic for cubic
substitutional alloys and allowing for the enhancement of
the damping due to the FMjNM interfaces [19–21], the
total damping in the system with a ferromagnetic slab of

thickness L can be written ~GðLÞ ¼ ~Gif þ ~GbðLÞ, where
we express the bulk damping in terms of the dimension-

less Gilbert damping parameter ~GbðLÞ ¼ ��MsðLÞ ¼
�� ~�sAL, where ~�s is the magnetization density and A is
the cross section. The results of calculations for Ni80Fe20
are shown in the inset to Fig. 2, where the derivatives of the
scattering matrix in (5) were evaluated numerically by

taking finite differences. The intercept at L ¼ 0, ~Gif , al-
lows us to extract the damping enhancement [20], but here
we focus on the bulk properties and leave consideration of
the material dependence of the interface enhancement for
later study. The value of � determined from the slope of
~GðLÞ=ð� ~�sAÞ is 0:0046� 0:0001, which is at the lower
end of the range of values 0.004–0.013 measured at room
temperature for Py [21–23].

Figure 2 shows the Gilbert damping parameter as a
function of x forNi1�xFex binary alloys in the fcc structure.
From a large value for clean Ni, it decreases rapidly to a
minimum at x� 0:65 and then grows again as the limit of
clean fcc Fe is approached. Part of the decrease in � with
increasing x can be explained by the increase in the mag-
netic moment per atom as we progress from Ni to Fe. The
large values of � calculated in the dilute alloy limits can be
understood in terms of conductivity-like enhancement at
low temperatures [24], which has been explained in terms
of intraband scattering [4,6]. The trend exhibited by the
theoretical �ðxÞ is seen to be reflected by experimental
room-temperature results. In spite of a large spread in
measured values, these seem to be systematically larger

than the calculated values. Part of this discrepancy can be
attributed to an increase in � with temperature [22,25].
Spin diffusion.—When an unpolarized current is injected

from a normal metal into a ferromagnet, the polarization
will return to the value characteristic of the bulk ferromag-
net sufficiently far from the injection point, provided there
are processes which allow spins to flip. Following Valet
and Fert [3] and assuming there is no spin-flip scattering in
the NM leads, we can express the fractional spin-current

densities p"ð#Þ ¼ J"ð#Þ=J as a function of distance z from the
interface as

p"ð#ÞðzÞ ¼ 1

2
� �

2

�
1� expð�z=lsfÞr�ifð�� �þ ��Þ

�ðr�if þ lsf��
�
F tanh�Þ

�
;

(6)

where J is the total current through the device, J" and J# are
the currents of majority and minority electrons, respec-
tively, lsf is the spin-diffusion length, ��

F ¼ ð�# þ �"Þ=4
is the bulk resistivity, and � is the bulk spin asymmetry

ð�# � �"Þ=ð�# þ �"Þ. The interface resistance r�if ¼ ðr#if þ
r"ifÞ=4, the interface resistance asymmetry � ¼
ðr#if � r"ifÞ=ðr#if þ r"ifÞ, and the interface spin-relaxation ex-

pressed through the spin-flip coefficient � [26] must be
taken into consideration, resulting in a finite polarization of
the current injected into the ferromagnet. The correspond-
ing expressions are plotted as solid lines in Fig. 3.
To calculate the spin-diffusion length we inject nonpo-

larized states from one NM lead and probe the transmission
probability into different spin channels in the other NM
lead for different thicknesses of the ferromagnet. Figure 3
shows that the calculated values can be fitted using ex-
pressions (6) if we assume that J�=J ¼ G�=G, yielding
values of the spin-flip diffusion length lsf ¼ 5:5� 0:3 nm
and bulk asymmetry parameter � ¼ 0:678� 0:003 for
Ni80Fe20 alloy, compared to experimentally estimated
values of 0:7� 0:1 for � and in the range 5.0–6.0 nm
for lsf [27].
lsf and � are shown as a function of the concentration x

in Fig. 4. The convex behavior of � is dominated by and
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FIG. 2 (color online). Calculated zero-temperature (solid line)
and experimental room-temperature (symbols) values of the
Gilbert damping parameter as a function of the concentration
x for fcc Ni1�xFex binary alloys [21–23]. Inset: total damping of
CujNi80Fe20jCu as a function of the thickness of the alloy layer.
Dots indicate the calculated values averaged over five configu-
rations, while the solid line is a linear fit.
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FIG. 3 (color online). Fractional spin-current densities for
electrons injected at z ¼ 0 from Cu into Ni80Fe20 alloy.
Symbols indicate calculated values, while the solid lines are
fits to Eq. (6).
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tracks the large minority spin resistivity �# whose origin is
the large mismatch of the Ni and Fe minority spin band
structures that leads to a �xð1� xÞ concentration depen-
dence of �#ðxÞ [16]. The majority spin band structures
match well, so �" is much smaller and changes relatively
weakly as a function of x. The increase of lsf in the clean
metal limits corresponds to the increase of the electron
momentum and spin-flip scattering times in the limit of
weak disorder.

In summary, we have developed a unified density func-
tional theory-based scattering theoretical approach for cal-
culating transport parameters of concentrated alloys that
depend strongly on spin-orbit coupling and disorder and
have illustrated it with an application to NiFe alloys.
Where comparison with experiment can be made, the
agreement is remarkably good, offering the prospect of
gaining insight into the properties of a host of complex
but technologically important magnetic materials.
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