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The phase diagram of Ca is examined using a combination of density-functional theory (DFT) and

diffusion quantum Monte Carlo (DMC) calculations. Gibbs free energies of several competing structures

are computed at pressures near 50 GPa. Existing disagreements for the stability of Ca both at low and

room temperature are resolved with input from DMC. Furthermore, DMC calculations are performed on

0 K crystalline structures up to 150 GPa and it is demonstrated that the widely used generalized gradient

approximation of DFT is insufficient to accurately account for the relative stability of the high-pressure

phases of Ca. The results indicate that the theoretical phase diagram of Ca needs a revision.
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Substantial experimental [1–9] and theoretical [10–21]
work has been devoted to the study of the electronic,
structural, and superconducting properties of Ca at high
pressure. Like other alkali and alkaline-earth metals, s-to-d
electron transfer under compression leads to interesting
structural transitions. The interest in Ca is also motivated
by its remarkable superconducting properties. Starting
from about 45 GPa, the superconducting critical tempera-
ture (Tc) of Ca increases with pressure and reaches 15 K at
150 GPa [2] and 25 K at 161 GPa [5]. This is the highest
observed Tc for a pure element to date. Although knowl-
edge of the structural, dynamical, and electronic properties
of Ca at high pressure is essential to explain the super-
conducting phenomenon, the structure in which it becomes
a superconductor is still a subject of debate.

At ambient conditions, Ca crystallizes in the face-
centered-cubic (fcc) structure. At higher pressure (P), the
following transitions have been observed in x-ray diffrac-
tion measurements at room temperature (T): to body-
centered-cubic (bcc) at 20 GPa, simple cubic (sc) at
32 GPa, P41212 or P43212 at 113 GPa, Cmca at 139 GPa,
and Pnma at around 160 GPa [1,3–6,9]. Recently, Mao
et al. [8] and Nakamoto et al. [9] reported that sc Ca
undergoes a monoclinic distortion to Cmmm upon cooling
below 30 K near 45 GPa. Furthermore, Mao et al. [8]
observed a slight rhombohedral distortion of sc at room T.

Theoretical investigations [10,12,15,17] based on
density-functional theory (DFT), on the other hand, found
that sc Ca has imaginary phonon frequencies from 0 to
120 GPa, which usually indicates mechanical instability.
Furthermore, contrary to experiment, the I41=amd struc-
ture was reported to have the lowest 0 K enthalpy up to
71 GPa [16,20]. Various other structures, including host-
guest [14,20], have been proposed at higher P, but most of
them do not match the experimental observations. Errea
et al. [15] noted that sc must exhibit strong anharmonic
effects and Yao et al. [16] reported that it has lower room-T

enthalpy than I41=amd around 40 GPa. However, their
result was reversed when the calculations were repeated
with a more accurate pseudopotential (PP) [21]. Even
approximate inclusion of entropic contributions [21] did
not favor sc over I41=amd within the generalized gradient
approximation (GGA) of DFT.
In this Letter, we first analyze the mechanical and

thermodynamic stability of Ca around 50 GPa within
GGA-DFT. The analysis includes computing temperature-
dependent renormalized phonons and performing thermo-
dynamic integration to obtain Gibbs free energies.
Diffusion Monte Carlo (DMC) corrections to the free
energies are then included based on a thermodynamic
perturbation approach. Finally, DMC calculations are per-
formed on several crystalline structures at 50, 100, and
150 GPa to determine their relative 0 K stability and the
results are compared with DFT enthalpies.
We start by examining the dynamical stability of the sc

and Cmmm structures. Their phonon dispersion relations
are first calculated using density-functional perturbation
theory as implemented in ABINIT [22]. The calculations
were performed with a ten-electron OPIUM PP which
includes the 3s and 3p semicore states as valence states,
PBE-GGA [23], a 30-hartree plane-wave cutoff energy and
a 163 Monkhorst-Pack (MP) mesh for the k-point sampling
of the Brillouin zone. The dynamical matrices were com-
puted on 83 MP grid. Both structures have imaginary
frequencies (see Fig. 1), indicating that in the harmonic
approximation and assuming classical particles they
should be dynamically unstable (our result for Cmmm
differs from what was reported in [8,9]).
To go beyond the harmonic approximation, we have

carried out Born-Oppenheimer molecular dynamics
(MD) simulations using the VASP code [24,25] in a canoni-
cal ensemble on sc, I41=amd, and Cmmm supercells
consisting of 64 atoms. Convergence was verified with
108- and 125-atom cells for I41=amd and sc, respectively.
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The calculations were performed with a ten-electron PAW
PP’s, 11-hartree plane-wave cutoff, and the PW91-GGA
[26,27] parametrization for the XC functional. The
Brillouin zone was sampled at the � point for the 108-
and 125-atom cells, and 23 MP grids were used for the
64-atom cells. The equations of motion were integrated
with ionic time steps of 1 fs and the ionic temperature was
controlled with a Nosé-Hoover thermostat. Initially, the
structures were allowed to equilibrate for 3 ps at 300 K,
after which the simulations were continued for an addi-
tional 5 ps to gather statistical information. To ensure
convergence, selected runs were performed for 7 ps after
equilibration. Temperature-dependent renormalized pho-
non frequencies were then computed at high-symmetry
points by Fourier transforming the wave-vector dependent
velocity autocorrelation function (VACF). For a given
polarization p the autocorrelation function [28] is given by

Apðk; tÞ ¼ hvp
kðtÞvp

kð0ÞiP
p
hvp

kð0Þvp
kð0Þi

; (1)

where vp
kðtÞ ¼

P
jv

p
j ðtÞ exp½�ik � rjðtÞ� is the reciprocal

space representation of the velocity, rj is the position of

atom j, vp
j is the p component of the velocity of atom j,

and k is the wave vector of interest. Phonon frequencies are
obtained from the locations of the sharp peaks of the
Fourier transformed Apðk; tÞ. The results for the sc and
Cmmm phases at around 45 GPa and 300 K are compared
with the 0 K dispersion curves in Fig. 1. Both structures are
dynamically stable at finite T and the differences between
the MD and harmonic frequencies indicate strong T
dependence of the vibrational modes.

The electronic band structures of sc and Cmmm have a
degeneracy at the � point, which is lifted by a Peierls
distortion, leading to a small energy gain. Because of
symmetry, the potential associated with this distortion
has a double-well character, first noted in [15]. As illus-
trated in Fig. 2(a) with the transverse soft modes of sc and
Cmmm, the potential barrier of the double well is only a
few meV. This means, first, that the entire double-well
potential is sampled by the ions at T � 102 K, consistent
with our renormalized phonon analysis. Second, the

tunneling frequency between the two sides of the well is
relatively large even in a quantum mechanical near-ground
state. It is 168 GHz in sc and 300 GHz in Cmmm with
their respective splitting between the lowest symmetric-
antisymmetric ionic eigenstates of 0.7 and 1.25 meV; for
example, compare this with 24 GHz and 0.1 meV in
ammonia. Therefore, even low-T x-ray diffraction experi-
ments will measure atomic positions at the equilibrium sc
and Cmmm sites, albeit they would exhibit enhanced ther-
mal diffuse scattering.
In order to investigate the thermodynamic stability of the

sc phase at finite T, we compare its Gibbs free energy with
that of the previously proposed I41=amd and Cmmm
structures. The Gibbs free energy, G ¼ hUi þ hPiV �
hTiS, where h i represents ensemble (time) average, is
computed under fixed number of atoms N, volume V and
T, from MD simulations as follows: hUi ¼ hEi þ hEkini is
the sum of the Kohn-Sham energy and the kinetic energy of
the ions, P ¼ �dE=dV þ NkBT=V and the entropy S is
obtained initially by integrating the vibrational density of
states (VDOS), which is the Fourier transform of the
VACF. The relative stability of the aforementioned struc-
tures is determined by calculating G as a function of P
along isotherms for several densities. Figure 2(b) shows the
Gibbs free energies of the sc and Cmmm structures relative
to I41=amd at 300 K. According to these calculations, sc is
not preferred at room T up to 80 GPa. We have also
computedG of sc and I41=amd at 600 and 1000 K between
46 and 54 GPa. The energy difference between the two
structures decreases with T favoring the sc structure at
1000 K.
While the VDOS represent temperature-dependent re-

normalized frequencies, a harmonic partition function is
assumed when integrating them to obtain S. This approach
does not fully account for anharmonic effects. To fully
account for them, we compute corrections to the free
energies obtained from VDOS using thermodynamic inte-
gration. In this method, MD simulations were carried out
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FIG. 2 (color online). (a) Double-well potentials associated
with atomic displacements along the transverse soft modes at
the M and Y points in sc (solid line) and Cmmm (dashed line),
respectively. The ground state ionic wave functions for these
modes are shown as well. (b) Gibbs free energies from DFT at
300 K of sc and Cmmm relative to I41=amd, with entropy
obtained from VDOS (circles) and thermodynamic integration
(crosses).
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FIG. 1 (color online). Phonon dispersion curves at 45 GPa and
0 K of (a) sc [21] and (b) Cmmm from linear response theory.
Solid circles are renormalized phonon frequencies from MD at
300 K near 45 GPa.
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for a system with a potential energy function of the form:
Uð�Þ ¼ U0 þ �ðU1 �U0Þ, where U0 is the potential en-
ergy of a reference system with known free energy and U1

is the potential energy of the system under investigation.
Here � is a coupling parameter which ranges from zero to
unity. The Helmholtz free energy difference between the
two systems is given by

�F ¼
Z 1

0
d�

�
@Uð�Þ
@�

�
N;V;T;�

: (2)

The value of the above integral is calculated numerically
by performing MD simulations in a canonical ensemble
with � from 0 to 1 in intervals of 0.1. For a reference
system, we have chosen an Einstein crystal with a har-
monic spring constant fitted to reproduce the Helmholtz
free energy obtained earlier from the VDOS integration.
With this choice, Eq. (2) represents the full anharmonic
correction to the TS term computed from VDOS.

We have performed thermodynamic integration on the sc
and I41=amd at 300 K for two densities, corresponding to
pressures near 47 and 51 GPa. At 47 GPa, �F is 6.82 and
6.12 meV for sc and I41=amd, respectively, confirming
that the free energies from VDOS capture most of the
anharmonicity: �F=ðTSÞ ¼ 6%. Furthermore, the relative
free energies of the different structures, shown in Fig. 2(b),
are identical within 1 meV between the two methods.
Based on these results, we conclude that the apparent
thermodynamic stability of sc Ca cannot be established
within the framework of the GGA-DFT.

The transition from the highly coordinated fcc and bcc to
lower coordinated structures such as sc, I41=amd, Pnma,
etc., is driven by s-to-d charge transfer. The difficulties of
local density approximations in describing transition met-
als are well known [29]. Furthermore, we notice the pro-
nounced peak in the electron DOS of I41=amd, indicating
enhanced electron localization [see inset in Fig. 3(a)]. This
has prompted us to consider the possibility that there are
significant errors originating from the GGA, in particular,
in relation to the relative stability of I41=amd. We have
addressed this issue by computing corrections to the DFT
free energies with DMC at the level of thermodynamic
perturbation, namely: FDMC�FDFTþhUDMC�UDFTiDFT.

The fixed node diffusion Monte Carlo (DMC) method
samples the exact lowest energy eigenvalue of the full
many body electronic Hamiltonian given a constraint on
the 3N � 1 dimensional nodal hypersurface [30]. For our
DMC calculations, we have used the CASINO package [31]
with a Slater-Jastrow guiding function. The nodal con-
straints were obtained from plane-wave DFT calculations
with a hard semicore Troullier-Martins PP with 10 valence
electrons and a plane-wave energy cutoff of 35 hartree
using the quantum-espresso package [32]. We used a
Jastrow term with explicit electron-electron, electron-
nucleus, and electron-electron-nucleus correlation func-
tions [33] and optimized the guiding function for each

structure within variational Monte Carlo (VMC) method
by minimizing the maximum absolute deviation of the
VMC energy. Finite-T DMC energies were obtained at
three different pressures by solving for the electronic
ground state energies of three snapshot structures for
each P drawn from the DFT-MD simulations at the (1=4,
1=4, 1=4) k point. As a check of k-point convergence we
also evaluated relative energies between structures ob-
tained from twist averaging [34] over a 23 k-point grid
with no qualitative change in results.
According to our DMC calculations, the sc structure is

preferred at 300 K, in agreement with the experimental
measurements. Figure 3(a) shows the energies of finite-T
configurations of sc, I41=amd, and Cmmm obtained from
DMC. The DMC-corrected Gibbs free energies of the sc
and Cmmm structures relative to I41=amd are shown in
Fig. 3(b). Although the DMC internal energies of sc and
Cmmm are almost degenerate at 300 K, the PV and TS
terms favor sc. Contrary to the DFT results, both the
internal energy and Gibbs free energies of sc are lower
than that of I41=amd. Indeed, the relative energy shift
coming from the DMC correction, about 100 meV at
50 GPa, is quite significant and beyond the uncertainties
of our calculations. Finally, we note that the slight rhom-
bohedral distortion of sc observed byMao et al. [8] leads to
energy change of less than a meV.
The relative 0 K enthalpies at 50, 100, and 150 GPa of

recently reported candidate structures computed with DFT
and DMC are given in Table I. The DMC energies for 0 K
structures were obtained from 32-atom supercells with
coordinates relaxed in DFT at fixed pressure, using twist
averaging over a 2� 2� 4 MP k-point mesh. For the
enthalpies, DFT pressures were used. The DMC calcula-
tions reveal that the Cmmm structure is preferred at low T
at 50 and 100 GPa. This is in agreement with the recent
experimental work of Mao et al. [8] and Nakamoto et al.
[9]. It is worth mentioning that I41=amd [16,20] and the
incommensurate I4=mcmð00�Þ structure [14] are not pre-
ferred within DMC. Note that we cannot make a direct
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FIG. 3 (color online). (a) DMC energies for sc, I41=amd, and
Cmmm configurations from MD at 300 K. Here 999 eV=atom is
an arbitrary reference energy. The inset shows the DFT elec-
tronic density of states of sc and I41=amd structures at 50 GPa.
(b) DMC-corrected Gibbs free energies at 300 K of sc and
Cmmm relative to I41=amd showing that the sc structure is
preferred. DFT results are shown for comparison.
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comparison with available x-ray measurements above
100 GPa. First, these experiments were conducted at
room T and second, we are using the DFT pressure. A
rough finite-difference estimate of P for several structures
near 100 GPa shows that the DMC pressure is systemati-
cally higher by about 10 GPa. The important result here is
the comparison between the two theoretical methods,
showing that GGA-DFT does not predict accurately the
lowest energy structures. Other properties of Ca, e.g.,
superconductivity, computed within DFT may also have
inaccuracies and need a revision.

In summary, we have investigated the stability of the
high-pressure phases of Ca. Errors that arise from the
exchange-correlation functional approximation of DFT
have been corrected with DMC to resolve discrepancies
between DFT calculations and experiment. A detailed
analysis of the high-pressure structures of Ca with more
accurate methods such as DMC is required to construct its
entire phase diagram and electronic properties. Our find-
ings for Ca may have relevance for other materials exhib-
iting s-to-d transitions under pressure.
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Phase �H (meV) Phase �H (meV)

I41=amd 0 Cmmm 0

50 Pnma 28.6 sc 61(2)

sc 50.3 I41=amd 82(3)

Cmmm 50.4 Pnma 96(2)

P43212 0 Cmmm 0

Cmca 14.2 sc 14(4)

100 Pnma 18.1 P43212 68(3)

I41=amd 61.4 Cmca 88(3)

Cmmm 95.0 Pnma 153(6)

sc 102.6 I41=amd 157(7)

I4=mcmð00�Þ 0 Pnma 0

150 Pnma 11.6 I4=mcmð00�Þ 51(3)

Cmca 49.4 P43212 81(4)

P43212 71.2 Cmca 98(7)
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