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Gyrokinetic simulations of small-scale turbulent transport in a closed magnetic field-line plasma

geometry are presented. The simulations are potentially applicable to dipolar systems such as the levitated

dipole experiment (LDX) [J. Kesner et al., Plasma Phys. Rep. 23, 742 (1997).] and planetary magneto-

spheres, as well as simpler systems such as the Z pinch. We report here for the first time the existence of a

robust particle (and weaker temperature) pinch regime, in which the particles are transported up the

density gradient. The particle pinch is driven by non-MHD entropy-mode turbulence at k?�i � 1 and

particle pinch appears at larger � � Ln=LT * 0:7, consistent with quasilinear theory. Our results suggest

that entropy-mode transport will drive the LDX plasma profiles toward a state with �� 0:7 and pressure

gradients that are near marginal ideal MHD interchange-mode stability.
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The transport of plasma by turbulent fluctuations plays
an important role in nearly all plasma systems. Typically
these fluctuations lead to a relaxation of the plasma gra-
dients and a diffusive spreading of the density and tem-
perature profiles away from ideal boundary. A remarkable
exception to this occurs in systems with dipolar magnetic
fields, such as planetary magnetospheres or more recently
the Columbia-MIT levitated dipole fusion experiment
(LDX) [1–3]. In these systems the fluctuations appear to
drive plasma inward, creating centrally peaked profiles of
the density, pressure, and temperature. One hypothesis is
that this inward transport results from mixing due to the
ideal MHD interchange instability and the tendency of this
mixing to force the system toward a marginally MHD-
stable state. For low �, the marginal stability condition
for the ideal-interchange mode may be written as pV� ¼
const, where � ¼ 5=3 for isotropic compression, p is the
plasma pressure, and V is the volume of a flux tube con-
taining a small but fixed amount of magnetic flux. In a
dipolar system the condition BA ¼ const leads to a flux-
tube area A / r3, a flux-tube volume V / r4, and a mar-
ginally stable p / r�4�—that is, a strongly peaked pres-
sure profile. The observed density profiles are somewhat
less peaked and seem consistent with the condition nV ¼
const or n / r�4—a result that is also believed to follow
naturally from interchange mixing [2]. The density and
pressure conditions may be combined with p ¼ nT to yield
T / n��1, or equivalently � ¼ Ln=LT ¼ �� 1 ¼ 2=3,
where Ln and LT and the density and temperature scale
lengths. Thus, to summarize, ideal-interchange mode fluc-
tuations are believed to drive the plasma profiles toward a
marginally stable state with pV� ¼ const and � ’ 2=3.

We argue here, based onfive dimensional gyrokinetic GS2
[4,5] flux-tube simulations, that these same two

conditions can plausibly arise not only from ideal MHD
interchange-mode activity but from small-scale, non-MHD
entropy-mode transport as well. Considering parameter
regimes that are ideally stable, we show for the first time
that entropy modes can generate robust, radially inward
particle transport comparable to the levels observed in
LDX. In the non-MHD scenario presented here, the con-
ditions pV� ¼ const and � ’ 2=3 arise from the depen-
dence of the nonlinear transport on the pressure gradient and
�. In particular, we show there are two distinct branches of
entropy-mode transport depending on whether �> 2=3 or
�< 2=3. When �> 2=3, the transport is driven by the
temperature gradient; the temperature flux Q / h ~T~vEi is
positive while the particle flux �part / h~n~vEi is negative,

and themagnitudes of both increase for increasing�. In this
regime, the negative particle transport and positive tem-
perature fluxwill steepen the density gradient relative to the
temperature gradient, driving the system back down to��
2=3. When�< 2=3, on the other hand, the density gradient
is the driver; the particle flux is positive and the temperature
flux is negative and the magnitude of both flux increases
very steeply with decreasing �—a feature that will prevent
� from falling significantly below � ¼ 2=3. The two
branches of the entropy-mode described above seem to
originate from the following. Consider the specific entropy

S ¼ p=n5=3 ¼ T=n2=3. Taking derivative in terms of radial
direction r, 1

S
dS
dr ¼ 2

3
1
Ln
� 1

LT
. Therefore, when �< 2=3,

1
S

dS
dr > 0, and when �> 2=3, 1

S
dS
dr < 0. On the other hand,

simulations indicate that the nonlinear transport decreases
1
S

dS
dr when �< 2=3, and increases 1

S
dS
dr when �> 2=3.

Hence, the entropy-mode transport tries to remove the
gradient of specific entropy, resulting in two unstable
branches with different transport characters. Deep within
either zone, the transport for fixed � increases with a

PRL 105, 235004 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

3 DECEMBER 2010

0031-9007=10=105(23)=235004(4) 235004-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.235004


steepening of the pressure gradient and is strong enough to
plausibly prevent the profiles from penetrating the ideal-
interchange unstable region. The notable exception to this,
first pointed out in the linear case in [6], is a narrow zone
centered on � ’ 2=3—a stability ‘‘notch’’—in which the
marginal stability boundary of the entropy-mode ap-
proaches (to within roughly 5%) that of the ideal-
interchange mode: pV� ¼ const. Thus, we believe the
stability notch with � ’ 2=3 and pV� ¼ const will act as
an attractor for the profiles, thus providing a non-MHD
explanation of these conditions that compliments the ideal
MHD arguments outlined above.

We focus our study on two limits of the ring dipole
system. One limit is a dipolar flux tube with strong parallel
variations of the magnetic field, Bmax=Bmin � 37, and a

high trapped particle fraction
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Bmin=Bmax

p � 99%.
The other limit is a flux-tube very close to the ring and is
equivalent to a Z-pinch geometry, in which the parallel
variations and trapped particles become negligible and the
field lines are circular. Given an appropriate normalization
of the dipolar case based on outboard midplane parameters,
the transport behavior of two systems is qualitatively and
quantitatively similar. In particular, the strong negative
particle transport observed in the Z-pinch limit for �>
2=3 shows that trapped particles are not an essential feature
of the particle pinch dynamics. The pinch is also robustly
insensitive to the value of � ¼ Te=Ti and the plasma
collisionalities.

We consider the regime � � 1, in which the dominant
instabilities have an electrostatic character and kk � k?.
There are two kinds of linear instabilities in our system [7]:
the ideal MHD interchange-mode and the small-scale non-
MHD entropy-mode. The local linear growth rate for the
ideal-interchange mode may be written as [7]:

�ideal=h!dii� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 10=3Þ=hbii�

p
where d � !�inð1þ

�Þ=h!dii� ¼ � dlnp
dlnU (d ¼ R=Lp for a Z-pinch) is a mea-

sure of the pressure gradient, bi � ðk2?Ti=Zimi�
2
ciÞ � 1,

!�in � clTi

Zien0

dn0
dc (!�i ¼ k?�ivthi=Lni for a Z-pinch),

h!dii� ¼ � clTi

2ZieU
dU
dc (!di ¼ k?�ivthi=R for a Z-pinch;

also note our definition of h!dii� is a factor of 2 smaller

tan that of [7]), � � dlnTiðc Þ=dc
dlnn0ðc Þ=dc ¼ Ln=LT , h� � �i� ¼

U�1 H½ð� � �Þd�=ðB � r�Þ�, Uðc Þ � H½d�=ðB � r�Þ�, c is

the flux function, n0 is the background density, and
H
d� is

an integral along a flux-tube (ignorable in the Z-pinch
case). The system is stable to ideal-interchange modes
when the gradients are sufficiently weak: d < 10=3 ¼
3:33 for the case of isotropic plasma pressure, and d <
7=2 ¼ 3:5 in the CGL (weak-collision) limit. The marginal
limit of the former condition (d ¼ 10=3) is equivalent to
the expression pV� ¼ const noted earlier. We focus here
exclusively on ideally stable parameter regimes, in which
the dominant instability is the entropy mode.

The entropy mode is a plasma analogue of the thermal
instability in ordinary fluids [8] modified by magnetic
curvature and finite Larmor radius (FLR) effects. As noted

earlier, this mode has separate branches for �< 2=3 and
�> 2=3. In the former case, for a � ¼ 1 equilibrium,
k?�i � 1, and sufficiently strong collisions, the entropy-

mode growth rate is given by [7] �entropy=h!dii� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5=9ðd 7�3�

1þ� � 10Þ=ð103 � dÞ
q

. This expression predicts the

mode is unstable for 10=7< d< 10=3 when � ¼ 0, while
for finite �, stability for any d < 10=3 is reached when
�> 2=3. In particular, for � ¼ 2=3, the marginal stability
condition of this branch reduces to d ¼ 10=3—the same as
that of the ideal-interchange mode. The gyrokinetic simu-
lations, carried out over a range of collisionalities, exhibit a
slightly lower entropy-mode threshold (typically by about
5%), as can be seen from the boundary of the stable white
region shown in Fig. 3 for �< 2=3. The stability notch
referred to earlier is represented by the upward indentation
in the stability boundary near � ’ 2=3.
The linear stability of the �> 2=3 branch of the entropy

mode is more complicated; finite k?�i effects can be
important and the dispersion relation is high-order poly-
nominal equation in both the low [9] or high [6,7] collision
limits. The marginal stability threshold for this branch
obtained from the GS2 simulations is represented by the
boundary of the stable zone in Fig. 3 for �> 2=3. Typical
linear growth rates are shown in Fig. 1(a) (dipolar case) and
Fig. 1(b) (Z-pinch) as a function of k?�s. (Here � is
normalized to cs=Rmid where c2s ¼ ðTi þ TeÞ=mi and
Rmid is the distance from the current ring to the outboard
midplane of the flux tube, and �s ¼ cs=�ci. Unless other-
wise noted, �s and �i for the dipolar case are evaluated at
the outer midplane). The difference between the dipole and
Z-pinch plots are due in part to the rather extreme choice of
an outboard midplane normalization in the former: normal-
izing � and k? to the other extreme, the inboard rather than
outboard midplane parameters, for example, decreases the
normalized growth rates of the dipolar case by about a
factor of 4 and shifts the peak of the k spectrum down to
k?�s � 1=37� 0:03.
Turning to the nonlinear regime, our simulations include

up to 128	 128 Fourier modes in the perpendicular direc-
tions spanning 0:13 
 k?�i 
 5:5 for the dipole case and
0:016 
 k?�i 
 1:3 for the Z pinch, and 32 grid points in
the parallel direction (the Z-pinch system remains uniform

FIG. 1 (color online). � vs k? in (a) a dipole for � ¼ 2
(squares) and 4 (triangles) at d ¼ 3:22, and � ¼ 1; (b) a Z pinch
for � ¼ 0:5 (crosses), 1 (triangles), and 10 (diamonds) at d¼3:2,
and � ¼ 3.
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in the parallel direction). For the ions and electrons we use
24 energy grid points each in the velocity space region 0 

v 
 6vthi and 10 grid points in � ¼ vk=v. Simulations

have been carried out to verify the insensitivity of the
transport levels to variations in the spatial and velocity
space resolutions and box size. The transport depends
only weakly on the mass ratio mi=me; most dipole runs
employ a deuterium mass ratio mi=me ¼ 3672 (the target
for LDX) while the Z-pinch runs use mi=me ¼ 1836. The
collision frequency is defined as �phys¼	n0e

4 ln�=

ðT3=2
i m1=2

i Þ��
ffiffiffi
2

p
vthi=Rmid. Collisions in the code are

modeled by a gyro-averaged Lorenz collision operator
[9] that conserves total energy and particle number. The
simulations presented here have a small base value of � ¼
0:000015 for the dipolar geometry and � ¼ 0:001 for the
Z-pinch case. Simulations at higher collisionalities up to
� ¼ 0:1, particularly near marginal entropy-mode stability,
can exhibit significantly stronger positive and negative
transport levels, due mainly to the collisional damping of
zonal flows [10]. In the Z-pinch limit, an artificial hyper-
viscous term in the gyrokinetic equations is included that
acts on the guiding center distribution functions and leads
to dissipation proportional to k4 [11]. No numerical hyper-
viscosity was used for the dipolar simulations.

The dominant modes contributing to the transport typi-
cally have k? values that are 1=4 to 1=2 those of the fastest
growing modes shown in Fig. 1. A comprehensive plot of
the transport in the Z-pinch case for various d and � is
shown in Fig. 2. The first, second, and third figures repre-
sent �part, ion temperature flux, and electron temperature

flux (normalized to ð�s=RmidÞ2csf with f ¼ n0 for the
particle flux and f ¼ n0T
 for the temperature flux) for
� ¼ 1 (similar results are obtained for a range of �, 0:5 &
� & 10). The blue regions of the left figure in Fig. 2 for
�> 2=3 represent the particle pinch regime. As noted
earlier, we would expect the negative particle flux and
positive temperature flux typical of the pinch region to
drive the system leftward (toward smaller �) in the figures.
If the stability boundary (the white region) is encountered
during this leftward traverse, the transport would drop and

pressure gradient would steepen, thereby forcing the sys-
tem upward (toward higher d) and then leftward again,
until finally the notch region (� ’ 2=3 and marginal MHD
stability) is reached. At that point, further decreases in �
below 2=3 lead to positive, large, and sharply increasing
particle and (pinched) temperature fluxes [10], likely pre-
venting a significant drop in � below 2=3. The transport in
the � ’ 2=3 region in LDX would likely be due to a
mixture of ideal-interchange modes and entropy modes.
The transport in the dipolar case is similar to the Z pinch.

Figures 3(a) and 3(b) show the nonlinear particle and
temperature flux versus d for � ¼ 2 (triangles) and 4
(diamonds). Additional simulations have been carried out
to verify the presence of a stability notch near � ’ 2=3 like
that seen in Fig. 3. The similarity between the dipolar and
Z-pinch transport in the �< 2=3 case was established in
[10]. The normalized transport levels in the dipolar limit
are similar to or somewhat lower than the corresponding
levels in the Z pinch, but as in the case of the linear growth
rates, this depends on the somewhat arbitrary choice of
normalization in the dipolar case: choosing normalizing
values that are �30% closer to the ring boosts the normal-
ized dipole transport by about a factor of �3, while nor-
malizing to the inner-midplane parameters increases the
levels by a factor of �1400.
Defining �phys � nveff and considering deuterium LDX

plasma parameters with Te � Ti � 100 eV, Rmid � 0:5 m,
Bmid � 0:2T / 1=R3

mid, the quantity veff may be expressed

in terms of the normalized GS2 particle flux �part plotted in

Fig. 3 as veff��partvthið�i=RmidÞ2�10�partðTi=100 eVÞ3=2
ðR=0:5mÞ4�10�part, where in the �> 2=3 regime typi-

cally �part ��10 or less (equivalently, D� �phys=n
0
0 �

veffLn, where Ln � 0:3 m). Such levels are roughly com-
parable to those reported in LDX [2].
Some physics of particle pinch can be understood from

fluid equations. At �> 2=3 region, the dominant terms for
the pinched transport originate from the balance of the two
terms in the electron density equation, @n

@t ��r � nvE.
Linearizing the equation, and keeping only the dominant

terms, �~n��r�ðnb
B	r ~�Þ��r ~� � ðnr	b

BÞ��in0k �
r	ðbBÞ ~�. For � � 1 (vacuum field), r	 b

B ¼ 2
Bb	 ~�m,

where for Z pinch, ~�m ¼ � r̂
R and !di ¼ k?�i

vthi

R > 0.

Then, �~n��2in0!diðe�Te0
Þ, therefore, ~n / �~vEr. This 	

FIG. 2 (color online). Z-pinch transport vs d and �: �part (left
column), ion temperature flux (middle column), electron tem-
perature flux (right column) for � ¼ 1. Red-yellow areas indicate
positive radial transport, and blue-green areas indicates negative
(pinched) values. The mode is stable in the white region. The
upper boundary of the plots at d ’ 3:4 are just below the ideal
MHD instability boundary in GS2.

FIG. 3 (color online). (a) �part for � ¼ 2 (triangles) and 4
(diamonds) and (b) Qion (same notation as �part) and Qele for

� ¼ 2 (green dashed) and 4 (red dashed) vs d for � ¼ 1 in the
dipole.
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phase difference is expected to create the pinched particle
flux �part � hReð~nÞReð~vErÞi. More complicated but similar

argument can be made for temperature pinch.
More precise argument can be obtained using gyroki-

netic model. The simulations show that the onset of the
particle pinch occurs in the linear stage, suggesting that
some insight into the physics of the pinch may be gained
from quasilinear theory. For simplicity we consider the
case of � ¼ 1 and � ¼ 0 in the Z-pinch system with
isotropic Maxwellian ion and electron equilibrium distri-
bution functions F0. The particle flux can be written as

�part ¼ hReð~nÞReð~vEÞiz ¼ c
B hReð~nÞReðikz ~�Þiz where z

represents the usual coordinate parallel to the symmetry
axis of the Z pinch. The goal of the calculation is to use the

(electron) gyrokinetic equation to relate ~n to ~�. This
relationship depends on the mode frequency ! ¼ !r þ
i� and it is therefore necessary to use the gyrokinetic
equations to first evaluate! as a function of the parameters
d and �. Neglecting electron FLR effects, the perturbed

electron distribution function fe can be written as fe¼
�e@F0e

@

~�þhe where ð!��deÞhe¼ð!���eÞe@F0e

@

~�,

F0e¼n0ð me

2	T0e
Þ3=2 expð� 


T0e
Þ, 
 ¼ meðvk

2þv?
2Þ

2v
the

2 , ��e ¼
�!�in½1þ ð 


T0e
� 3

2Þ�� ¼ �k?�ivthi=Lnð1þ g�Þ, g �


T0e

� 3
2 , �de ¼ �!diðvk

2þv?
2=2

v
the

2 Þ. Integrating fe over

velocity space to obtain ~n, noting that the first (adiabatic)
term in fe does not contribute to �part when the spacial

average over z direction is taken, and assuming ~� ¼
~�0e

ikzz�!t for some real �0, one obtains �part ¼
Im½R !���e

!��de

@F0

@
 d3v�kz�2
0e

2�t ec
2B . Evaluating the velocity

space integral numerically, one finds the sign �part agrees

well with the GS2 simulations shown in Fig. 2 for both �
branches. Following the notation and terminology of [12],
�part may be decomposed as

�part ¼
�
1þ �CT þ 1þ �

d
CP

�

1
0e

2�t (1)

where

CT � 1


1

Im

�Z g

!þ�di

@F0e

@

d3v

�
;

CP � 1


1

Im

�Z !=!di

!þ�di

@F0e

@

d3v

�
;


1 � Im

�Z 1

!þ�di

@F0e

@

d3v

�
> 0


0 � cek2z�ivthi

2BLn

�2
0 > 0:

and the positivity of 
1 has been established numerically.
As can be seen from Eq. (1), a negative value of �part is

obtained only when CT and/or CP are sufficiently large and
negative: the dominance of CT < 0 is denoted a thermo-
diffusion pinch, while CP < 0 is associated with a curva-
ture pinch. The particle pinch in the present system falls
into the latter category. Figures 4(a) and 4(b) demonstrate
typical CT (three-dots-dashed green) and CP (dashed red)
values in the parameter range of interest with k?�i ¼ 0:2.
The shaded regions are linearly stable. Considering Fig. 4
(a), the quasilinear �part > 0 (plotted in arbitrary units)

when � & 1 and �part < 0 when � * 1, the latter resulting

from strongly negative CP. Figure 4(b) shows the corre-
sponding plots for fixed � ¼ 2 as a function of d, where
again �part < 0 is due to CP < 0. A particle pinch is also

predicted by fluid theory calculations, provided one uses
the gyrokinetic values of !r and �.
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(b) � ¼ 2 as a function of d.

PRL 105, 235004 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

3 DECEMBER 2010

235004-4

http://dx.doi.org/10.1038/nphys1510
http://dx.doi.org/10.1017/S0022377808007071
http://dx.doi.org/10.1016/0010-4655(95)00035-E
http://dx.doi.org/10.1016/0010-4655(95)00035-E
http://dx.doi.org/10.1103/PhysRevLett.85.5579
http://dx.doi.org/10.1063/1.1287915
http://dx.doi.org/10.1063/1.1399058
http://dx.doi.org/10.1063/1.2205830
http://dx.doi.org/10.1063/1.2205830
http://dx.doi.org/10.1103/PhysRevLett.103.055003
http://dx.doi.org/10.1103/PhysRevLett.103.055003
http://dx.doi.org/10.1103/PhysRevLett.97.245001
http://dx.doi.org/10.1103/PhysRevLett.97.245001
http://dx.doi.org/10.1088/0741-3335/50/11/115005
http://dx.doi.org/10.1088/0741-3335/50/11/115005

