
Fast Magnetic Reconnection in the Plasmoid-Dominated Regime

D.A. Uzdensky,1,2 N. F. Loureiro,3,2 and A.A. Schekochihin4,2

1Center for Integrated Plasma Studies, University of Colorado, Boulder Colorado 80309, USA
2Isaac Newton Institute for Mathematical Sciences, Cambridge, CB3 OEH, United Kingdom
3Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear—Laboratório Associado,
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A conceptual model of resistive magnetic reconnection via a stochastic plasmoid chain is proposed. The

global reconnection rate is shown to be independent of the Lundquist number. The distribution of fluxes

in the plasmoids is shown to be an inverse-square law. It is argued that there is a finite probability of

emergence of abnormally large plasmoids, which can disrupt the chain (and may be responsible for

observable large abrupt events in solar flares and sawtooth crashes). A criterion for the transition from the

resistive magnetohydrodynamic to the collisionless regime is provided.
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Introduction.—Magnetic reconnection is the process of
topological rearrangement of the magnetic field, convert-
ing magnetic energy into various forms of plasma energy
[1]. It is believed to cause solar flares and has been studied
in tokamaks [2], dedicated laboratory experiments [3] and
measured in Earth’s magnetosphere [4]. The key concep-
tual underpinnings of the modern understanding of resis-
tive reconnection can be summarized in three points:
(i) generic X-point configurations are unstable and collapse
into current layers [5,6]; (ii) the structure of resistive
current layers is well described by the Sweet-Parker (SP)
model [7]—if B0 is the upstream magnetic field, VA ¼
B0=

ffiffiffiffiffiffiffiffiffiffi
4��

p
is the Alfvén speed (� the plasma density), L

the length of the layer, � the magnetic diffusivity, and S �
VAL=� the Lundquist number, then the layer thickness is

�� L=
ffiffiffi
S

p
, the outflow velocity is VA, and the reconnec-

tion rate is cE� VAB0=
ffiffiffi
S

p
, which is ‘‘slow’’ because it

depends on S, which is very large in most natural systems;
(iii) when S exceeds a critical value Sc � 104, the SP layers
are linearly unstable [8] and break up into secondary
islands, or plasmoids [9]. This fact has emerged as a
defining feature of numerical simulations of reconnection
as they have broken through the Sc barrier [6,9–16]. It
seems that high-S reconnection generically occurs via a
chain of plasmoids, born, growing, coalescing, and being
ejected in a stochastic fashion [17,18]. Importantly, recent
numerical evidence [11,13–16] suggests that plasmoid re-
connection is ‘‘fast,’’ i.e., independent of S.

In this Letter, we propose a conceptual model of a
resistively reconnecting incompressible plasmoid chain
and infer the following basic properties: (i) the global
reconnection rate is independent of S, (ii) the chain has
a power-law (inverse-square) distribution of plasmoid
fluxes and sizes, and (iii) there is a finite probability of
abnormally large plasmoids that can disrupt the chain.
We also provide a criterion for a transition from the

fast resistive MHD regime to a faster collisionless
regime.
Plasmoid chain: general physical picture and key as-

sumptions.—We envision the plasmoid-dominated recon-
nection layer in a statistical steady state as a chain of
plasmoids of various sizes separated by small current
sheets [19]. All plasmoids move outwards and there is an
underlying velocity gradient along the chain. The plas-
moids differ greatly in size and so are not equal members
of the chain, which thus has a hierarchical structure.
Consider the global current layer of length 2L. We may
call the largest plasmoids in it the secondary ones. Any pair
of two adjacent secondary plasmoids transforms the region
between them into a secondary reconnection layer of

length 2Lð2Þ � 2L with an end-to-end longitudinal veloc-
ity difference of �2VA. Then, the characteristic ejection
time for tertiary plasmoids created by the plasmoid

instability [8] in this secondary layer is ��ð2ÞA ¼ Lð2Þ=VA,
much shorter than the global Alfvén time �A ¼ L=VA.
Thus, the tertiary plasmoids are ejected from the secondary
layer relatively rapidly, and their typical size remains
smaller than that of the secondary plasmoids. Upon ejec-
tion, the tertiary plasmoids coalesce with the larger
secondary ones, contributing to their growth. Thus, the
secondary layer itself becomes a plasmoid-dominated
reconnection layer. A similar argument can be applied to
the tertiary layers and so on. We thus get a self-similar
hierarchy of plasmoids and interplasmoid current layers
that are themselves complex chains of next-generation
plasmoids [14,16,17].
The smallest elementary structure in the chain is the

‘‘critical layer’’—a SP layer marginally stable to the plas-
moid instability (S ¼ Sc � 104). Its key parameters—the
length Lc ¼ Sc�=VA, the thickness �c ¼ Lc=

ffiffiffiffiffi
Sc

p
, and the

reconnection rate cEc ¼ B0VA=
ffiffiffiffiffi
Sc

p
—depend only on �

and VA but not on L [16]. We expect that the smallest
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current layers in the system are never much shorter or
much longer than the critical length Lc, and their recon-
nection rate always hovers around Ec. Indeed, because
of the underlying velocity gradient, the secondary layer
between any two adjacent plasmoids is continuously
stretched. When its length exceeds Lc, this layer becomes
slightly supercritical to the plasmoid instability [8] and
produces a new plasmoid flanked by two new X points.
This new plasmoid grows rapidly and reaches the critical
size at which the two X points on its sides undergo an
X-point collapse [5,6], turning promptly into two new
current sheets. This process repeats continuously. We as-
sume that this splitting of a supercritical interplasmoid
layer occurs faster than the typical stretching time of that
layer; then the lengths of the resulting two new layers are
always somewhat smaller than Lc. Thus, the plasmoid
chain contains N � L=Lc � S=Sc [which is much larger

than in the linear regime, Nlin � ðS=ScÞ3=8 [8]] plasmoids
(of all generations) separated by near-critical current
layers. The plasmoid hierarchy is thus truncated at the
critical layer.

We can now formalize the above picture in terms of the
following assumptions, expected to hold on average:

(I) The X point collapses and layer-splitting instabilities
are sufficiently fast (Alfvénic or super-Alfvénic), so on
average any two immediately adjacent plasmoids are sepa-
rated by a critical layer.

(II) The upstream reconnecting field in each interplas-
moid layer is equal to the global reconnecting fieldB0. This
implies that the outflows into all plasmoids are Alfvénic,
with velocity VA. This is easy to show via a theoretical
analysis of the acceleration of plasmoids along the layer by
the magnetic tension of the associated open flux [20], but
here it will be assumed without proof. It then follows that
the mean flow in the global layer (and in each sublayer) is
roughly Hubble-like, vy � VAy=L (x and y are the direc-

tions across and along the layer).
(III) Plasmoids do not saturate before they are ejected

from the current layers in which they are embedded into
larger plasmoids flanking these layers.

Assumptions I and II appear to be supported by numeri-
cal evidence but need to be checked systematically.
Assumption III will be verified a posteriori in our theory.

Effective reconnection rate.—A key question in any
reconnection study is that of the reconnection rate.
Because of the inherently nonsteady nature of plasmoid
reconnection, we are interested in the effective time-
averaged (global) rate of transfer of magnetic flux from
the upstream to the downstream region. To find it, consider
a simple chain of secondary plasmoids and current sheets.
The fact that the secondary current layers in the hierarch-
ical picture are not simple SP sheets but, instead, complex
plasmoid-dominated layers is not important here; we will
just view them as effective reconnection regions with

reconnection rate Eð2Þ. Our goal is to relate the effective

global reconnection rate Eeff to Eð2Þ.

Note that a fully closed magnetic island carries no net
reconnected flux (Bx). The only reconnected flux actually
carried out is the open flux threading the midplane x ¼ 0
between the secondary current sheets and plasmoids and
ejected from the layer with them. This flux accumulates
because the plasmoid chain is not quite uniform in y: the
reconnection rates at the two X points on both sides of any
given plasmoid slightly differ (because B0 decreases out-
ward along y), resulting in the growth of open flux on the
faster-reconnecting (smaller-jyj) side of the plasmoid.
Thus, the plasmoid chain is not a simple sequence of closed
magnetic islands and current sheets. For example, while
the left Y point of a secondary layer located to the right of
the global center separates it from a plasmoid to its left, the
right Y point separates it from a region of open flux
followed by the plasmoid to its right (see Fig. 1).
We can now relate the open flux to the overall recon-

nection rate. The total reconnected flux is the sum of all
open-flux parcels between the center of the global layer
(y ¼ 0) and its right end (y ¼ þL). Reconnection in any
given secondary layer adds to the open flux on its right and
subtracts from the open flux enveloping the plasmoid on its
left. Upon summing over all the y > 0 layers, the contri-
butions from all except for the very first one (closest to the
global center) cancel. The total open flux is thus equal to
the flux reconnected via that central-most layer. Since in a
statistical steady state each plasmoid and each open-flux
parcel eventually get ejected, the net effective reconnection

rate equals that of a single secondary layer: Eeff � Eð2Þ.
Note that this argument is very general; it is purely kine-
matic and does not rely on any dynamical considerations
(e.g., on our assumptions I–III). Applying the same rea-
soning to all levels n in the self-similar plasmoid hierarchy,
down to the critical layer at the bottom, we see that the
effective reconnection rate is scale invariant (the same for
all levels) and is equal to

cEeff ¼ cEðnÞ
eff � cEc � S�1=2

c VAB0 � 10�2VAB0: (1)

This means that truly slow reconnection cannot occur,
even in collisional plasmas. And indeed, we are not aware
of any numerical or observational evidence for ~Eeff �
cEeff=B0VA much below 10�2.
Plasmoid growth and flux distribution.—We are inter-

ested in a more detailed statistical description of the
hierarchical plasmoid chain, beyond just the effective re-
connection rate. Namely, we want to find the plasmoid
spectrum, i.e., the plasmoid flux and size distributions

FIG. 1. Contour plot (detail) of � from an MHD simulation at
S ¼ 3� 105, illustrating the open magnetic flux. The simulation
was done in a 4096� 1024 box ðx; yÞ 2 ½�0:1L; 0:1L� �
½�0:5L; 0:5L� in a setup similar to Ref. [9].
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(cf. [18]; see [16] for a numerical study of the statistics of
current sheets). To do this, we analyze the interplay be-
tween plasmoid growth, ejection, and coalescence. We first
focus on ‘‘normal’’ plasmoids—those born not very close
to the centers of their host layers (previous-generation
layers in which they are embedded). The importance of
this distinction will become clear later.

Consider a normal plasmoid of class n inside a host layer

of length 2Lðn�1Þ connecting two plasmoids of class n� 1.
The plasmoid lives until it is ejected from the host layer
and merges (coalesces) with a larger plasmoid of a pre-

vious class. The ejection lifetime is tðnÞej � Lðn�1Þ=VðnÞ
out,

where VðnÞ
out is the typical plasmoid velocity within the

host layer. Since, by corollary to assumption II, VðnÞ
out �

VA for all plasmoid classes [20], tðnÞej � �ðn�1Þ
A ¼

Lðn�1Þ=VA. During this time, the plasmoid grows via re-
connection in the two nth-level layers on its sides. By
assumption III (to be verified later), the plasmoid is ejected

before saturating, so its flux grows as d�ðnÞ=dt ¼
cEðnþ1Þ

eff � cEeff , and eventually reaches

�ðnÞ � cEðnþ1Þ
eff tðnÞej � cEeffL

ðn�1Þ=VA � ~EeffB0L
ðn�1Þ: (2)

We can now find the cumulative plasmoid-flux distribu-
tion function Nð�Þ—the total number (in the global layer
of length 2L) of plasmoids with fluxes larger than �. On

the one hand, the relationship between the typical flux�ðnÞ

of normal plasmoids and their host-layer length Lðn�1Þ is
given by Eq. (2). On the other hand,Lðn�1Þ is comparable to

the typical separation between plasmoids larger than �ðnÞ

(i.e., of all previous classes): 2Lðn�1Þ ��yðn�1Þ �
2L=Nð�ðnÞÞ. Dropping the class index n, we then get
�Nð�Þ � cEeffL=VA ¼ ~EeffB0L, and hence the flux dis-
tribution density is

fð�Þ ¼ �dN=d�� ~EeffB0L�
�2: (3)

This is a testable quantitative result. Another way to derive
it is to consider a plasmoid-dominated layer and randomly
pick a plasmoid with some flux �0. Its expected age is
�past ��0=cEeff and its future life expectancy (the time

before it is ejected into a larger plasmoid) is �future �
�yð�>�0Þ=VA � L=VANð�0Þ. Since the plasmoid was
chosen randomly, we expect �future � �past [21], which

again yields �0Nð�0Þ � cEeffL=VA.
Growth and distribution of plasmoid sizes.—When a

small amount of flux ��ðnÞ ¼ B0�x is reconnected and
added to a growing plasmoid of class n, its area is increased

by �AðnÞ��yðnÞ�x¼�yðnÞ��ðnÞ=B0, where �yðnÞ is the
separation between plasmoids of class n. On the normal-

plasmoid life time scale tðnÞej & �ðn�1Þ
A , �yðnÞ is not changed

strongly by the Hubble flow, �yðnÞ�const. Then, the plas-

moid area grows just as AðnÞ��yðnÞ�ðnÞ=B0. As long as the

plasmoid x width wðnÞ
x remains smaller than its y extent

wðnÞ
y ¼�yðnÞ�2LðnÞ, the latter stays roughly constant and

comparable to�yðnÞ. Then, the growth of the plasmoid area

translates directly into the growth of its x width: wðnÞ
x �

AðnÞ=wðnÞ
y ��ðnÞ=B0. Using Eq. (2), we find

wðnÞ
x � cEðnþ1Þ

eff tðnÞej

B0

� cEðnþ1Þ
eff Lðn�1Þ

B0V
ðnÞ
out

� ~EeffL
ðn�1Þ: (4)

Interestingly, this allows us to make a comparison with the
Shibata-Tanuma [17] estimate for the reconnection rate

cEðSTÞ
eff � VoutB0wmax=L, based on a SP mass conservation

argument and the assumption that the effective outflow
channel width is the plasmoid chain width wmax.
Applying their estimate to any nth level in the hierarchy

and taking wmax � wðnÞ
x , given by Eq. (4), we get cEðnÞ

eff �
VðnÞ
outB0w

ðnÞ
x =Lðn�1Þ � cEðnþ1Þ

eff , independent of Vout or of n,
which coincides with our result, Eq. (1).
The size distribution of normal plasmoids now follows

from Eq. (3) and the width-flux relation wxð�Þ ��=B0:

fðwxÞ ¼ �dNðwxÞ=dwx � ~EeffLw
�2
x : (5)

Lack of saturation.—These results allow us to verify our
assumption III that plasmoids do not saturate. Saturation
would occur ifwx at any level became comparable with the
typical separation �yð�Þ � L=Nð�Þ between plasmoids
of this size or larger. Using wx ��=B0 and Eq. (3), we
have wx=�yð�Þ ��Nð�Þ=B0L� ~Eeff � 1, Thus, the
nonlinear saturation never becomes an issue.
It is worth noting the crucial role of plasmoid coales-

cence (ejection into larger plasmoids) in mitigating non-
linear saturation. If we only had a simple chain of
N � L=Lc � S=Sc plasmoids moving along the global
layer, then plasmoid growth would saturate at wsat � Lc,
corresponding to a plasmoid flux of�sat � B0Lc. The time

for this to happen, tsat ��sat=cEc � ðLc=VAÞS1=2c , would

be shorter than the global ejection time �A ¼ L=VA if S >

S3=2c � 106. Thus, without coalescence, plasmoids would

quickly saturate, stifling reconnection for S > S3=2c .
Coalescence prevents the accumulation of saturated plas-
moids and allows larger plasmoids to grow in size by
eating up smaller ones; it is thus essential for the fast
plasmoid-dominated reconnection.
Monster plasmoids.—The above picture is modified

by the presence, in addition to the normal plasmoids, of
relatively rare ‘‘anomalous’’ plasmoids born near the cen-
ters of their host layers at any level in the hierarchy. The
most important of them are the lowest-generation anoma-
lous plasmoids born near the center of the global layer
of length 2L. Because the Hubble-flow ejection time
for an anomalous plasmoid born at y ¼ y0 � L is
tej ¼

R
L
y0
dy=vy ’ �A logðL=y0Þ, this plasmoid lives longer

than normal plasmoids and hence grows larger. Its final
flux is enhanced just by a logarithmic factor: ��
cEeff�A logðL=y0Þ; however, the enhancement of its area
is much greater. Indeed, a given plasmoid grows in mass
and area by sucking in all the plasma (including smaller
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plasmoids) within its domain of influence, which extends
up to the midpoint between it and the next plasmoid of
similar size. Thus, the area growth rate is proportional
to the interplasmoid separation �yðtÞ: dA=dt�
½�yðtÞ=B0�d�=dt� �yðtÞ ~EeffVA. But, on their long ejec-
tion time scale, the separation between two anomalous
plasmoids grows exponentially, �yðtÞ � �yð0Þ expðt=�AÞ.
Therefore, AðtÞ also grows exponentially and ultimately

reaches Amax ¼
Rtej
0 dtðdA=dtÞ � ~EeffL

2�yð0Þ=y0, larger

by a factor L=y0 � 1 than for normal plasmoids. Taking
the typical smallest initial position y0 to be��yð0Þ, we get
Amax � ~EeffL

2. Next, it is easy to show that for S > S5=4c �
105, this growth is so rapid that the plasmoid x width wx

catches up with its initial y extent wy ��yð0Þ before tej is
reached. Then, subsequently, wx and wy grow in unison

and eventually reach wmax � A1=2
max � ~E1=2

eff L� 0:1L. This
prediction of occasional large, macroscopic ‘‘monster’’
plasmoids should have important implications for obser-
vations (e.g., large abrupt events in solar flares [22] and
sawtooth crashes [2]) and simulations.

Transition to collisionless reconnection.—Even if the
global reconnection layer is in the resistive MHD regime,
�SPðLÞ>minfdi; �sg, where di is the ion collisionless skin
depth and �s is the ion sound Larmor radius, this may not
be so for the smaller layers in the plasmoid hierarchy.
Namely, if �c <minfdi; �sg, then resistive MHD breaks
down at some level in the hierarchy and the corresponding
current sheets transition to fast collisionless reconnection
with cEHall ’ 0:1B0VA � 10cEc. The hierarchy terminates
at this point (cf. [12,16,23]). Most of our results should still
hold, with Eeff � EHall. Interestingly, the resulting range,
0:01 & ~Eeff & 0:1, covers most of the rates inferred obser-
vationally or numerically.

One can evaluate the ratio �c=di as

�c=di � S1=2c �=VAdi � S1=2c �e=�e; (6)

where �e and �e are the electron cyclotron and collision
frequencies (cf. [12]). Thus, the plasmoid hierarchy stays
collisional all the way down to the critical layer only in

very collisional plasmas. Using Spitzer resistivity, �c=di �
ðS1=2c =12�Þðc=VAÞðme=miÞ1=2 ln�N�1

D , where ND �
ð4�=3Þne�3

D is the number of electrons in a Debye sphere.
Since ND � 1 for a medium to be considered a normal
plasma, we expect �c � di and so the smallest layers in
the plasmoid chain are unavoidably collisionless. In the
strong-guide-field case, di is replaced by �s and the above

expressions are only changed by factors of ��1=2, which
does not significantly affect our conclusions.

Conclusions.—We have proposed a simple model of
reconnection in plasmoid-dominated current layers which
yields a Lundquist-number independent effective recon-

nection rate ~Eeff � S�1=2
c � 0:01 and a self-similar distri-

bution of plasmoid sizes and fluxes (an inverse-square law,
a testable prediction). In addition, we have argued that the
plasmoid instability induces a multilevel plasmoid

hierarchy that almost always reaches the kinetic scales,
implying that pure resistive MHD reconnection occurs
only in the most collisional plasmas. Our prediction of
the occurrence of monster plasmoids, of width wx �
0:1L, offers a possible interpretation of observable events
in solar flares and sawtooth crashes.
While a detailed nonlinear theory of plasmoid reconnec-

tion remains a challenge, as do fully resolved simulations
of such a process, we hope that the simple model presented
above might provide a useful conceptual framework for
high-Lundquist-number reconnection in the way the SP
model has done for moderate Lundquist numbers.
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