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A similarity decay law is proposed for enstrophy of a one-signed-vorticity fluid in a circular free-slip

domain. It excludes the metastable equilibrium enstrophy which cannot drive turbulence, and approaches

Batchelor’s t�2 law for strong turbulence. Measurements of the decay of a turbulent electron fluid agree

well with the predictions of the decay law for a variety of initial conditions.
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Electron fluids are pure electron plasmas confined
within a Malmberg-Penning (MP) trap consisting of hol-
low conducting cylinders in a uniform axial magnetic field
[1]. Electron fluid experiments have garnered attention as a
testing ground for 2D turbulence [2], and as a prototype for
plasma relaxation [3,4]. The idealized system (neglecting
dissipation) is isomorphic to a bounded, singled-signed
vortex fluid [5,6]. Substantial effort has been devoted
towards understanding the relaxation of a 2D electron fluid
towards metastable states that are attained over hydrody-
namic time scales [7–11], prior to the much longer decay
towards thermal equilibrium. Here we continue the study
of the relationship between an electron plasma and 2D
hydrodynamics by examining enstrophy decay leading to
the metastable equilibrium state, recalling the family of
similarity laws for energy decay introduced by Taylor and
von Kármán. We find an analogous similarity principle for
enstrophy decay, in which the metastable equilibrium ens-
trophy is set aside as inactive. Experimental measurements
agree well with the predictions of this principle for strongly
turbulent initial conditions.

A central prediction of statistical turbulence theory [12]
is the similarity decay of fluctuation in an incompressible
homogeneous turbulent fluid. The ‘‘self-preservation’’ hy-
pothesis [13] holds that the velocity autocorrelation func-
tion maintains its shape during decay, stretching in
response to changes of energy and length scale. Later
development [14] described an intermediate (inertial)
self-similar range of scales. Later, Kraichnan [15] and
Batchelor [16] extended these ideas to 2D turbulence, in
which both energy and enstrophy (mean square vorticity)
control the nonlinear cascades.

Simulations [17–21] and experiments [22–25] observe a
2D enstrophy cascade, with a wide variation in the ob-
served enstrophy spectrum [26,27]. Batchelor’s predicted
enstrophy decay law has been more elusive. This difficulty
is partially due to the appearance of quasi-isolated vortices
[28,29], and at later times, a metastable equilibrium
[7–11]. We show that a similarity decay of enstrophy can
be obtained once this equilibrium is taken into account.
This similarity decay is shown to be valid for a variety of

initial conditions with strong nonlinearity without regard
for details of the evolution.
Electron fluid experiments are operated in a regime

where confinement end effects are minimized and fast
motions in the axial direction average over axial variations.
As a consequence, to a good approximation the electron
density nðr; �; tÞ in these experiments follows 2D,
z-averaged, E� B drift motion [6], with drift velocity

v D ¼ � cr�� ẑ

B
; r2� ¼ �4�jejn; (1)

where � is the electrostatic potential, B is a uniform
magnetic field, and E ¼ �r�. For this system, vD is
equivalent to the 2D fluid velocity v, with the fluid vor-
ticity ! ¼ 4�jejcn=B, and stream function c ¼ �c�=B.
With this analogy, we examine the enstrophy decay of a 2D
fluid with single-signed vorticity bounded in a circular
domain with free-slip boundary conditions.
The 2D vorticity Navier-Stokes (NS) equation is

@!

@t
þ ðv � rÞ! ¼ �r2!; (2)

where v is the velocity field with ! ¼ r� v � ẑ and � is
the kinematic viscosity. Incompressibility requires that
v ¼ rc � ẑ for a stream function c , where r2c ¼
�!. We choose a bounded circular domain of radius R
with free-slip boundary conditions to make correspon-
dence with the MP experiment; then c vanishes at radius
r ¼ R. In the ideal limit � ! 0, we expect conservation of
circulation C ¼ h!i, energy E ¼ h!c i=2, and fluid angu-
lar momentum M ¼ h2c i. (The also-conserved central
vorticity moment L ¼ hr2!i ¼ CR2 � 2M is sometimes
called ‘‘angular momentum’’ in MP trap literature.) The
fragile invariant enstrophy � ¼ h!2i=2 may decay
through dissipation at the smallest scales.
Electron fluids are neither exactly 2D nor described (in

any obvious way) by a simple viscosity �. Both the physi-
cal mechanisms and the functional form of the dissipation
mechanisms are expected to differ in NS and electron
fluids [30]. Furthermore, the free-slip boundary condition
is, in the NS context, at odds with viscous flow. However,
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in the electron fluid context, it seems a natural boundary
condition, in that it corresponds to a normal electric field at
a perfect conductor. Theory incorporating the 2D, inviscid,
and free-slip boundary approximations describes reason-
ably well the global evolution of the 2D electron fluid in
the turbulent decay phase [11].

In some cases the electron fluid evolves towards a long-
lived metastable state that has considerable spatial nonun-
iformity. For example, with specially regulated initial
conditions, off-axis [31] and ‘‘vortex crystal’’ [32,33] states
can be found. However, typically the system evolves rap-
idly (tens of�s) towards axisymmetry, a property unique to
the circular domain. (Subsequent evolution to thermal equi-
librium occurs in seconds.) Axisymmetrization assists in
suppressing the nonlinearity in Eq. (2), eventually leading
to an axisymmetric metastable vorticity!ms, with a mono-
tonically decreasing radial profile. This state has been
analyzed using the conserved quantities and statistical the-
ory [2,34–36] and has been found with reasonable accuracy
to agree with experiment [11].

On this basis we postulate that enstrophy of the meta-
stable equilibrium �ms is not available to drive the turbu-
lent dynamics at any time. Accordingly, we define

�FðtÞ ¼ �ðtÞ ��ms; (3)

and call �F the ‘‘free enstrophy.’’ The similarity decay of
the free enstrophy will take the form

d�F

dt
¼ �a

�F

�
; (4)

where � ¼ �ðtÞ is the time scale associated with the turbu-
lent decay and a is a constant parameter.

von Kármán’s development is based on two point corre-
lation functions in 3D isotropic turbulence [37]. However,
inhomogeneity and boundedness of the electron system
complicate the study of correlations, so we presume a
similarity decay at the onset. The key step is assuming the
global time scale � can depend only on�F and a character-
istic length scale l, i.e., �� ð�FÞpðlÞq for some p; q. The
only dimensionally consistent choice is p ¼ �1=2, q ¼ 0,

or � ¼ 1=
ffiffiffiffiffiffiffi

�F
p

. This is analogous to � ¼ l=
ffiffiffiffi

E
p

in 3D,
where l is a correlation length. Equation (4) becomes

d�F=dt ¼ �a�Fð3=2Þ, for which the solution is

�F

�F
0

¼ ½1þ 2a
ffiffiffiffiffiffiffi

�F
0

q

ðt� t0Þ��2; (5)

where �F
0 ¼ �Fðt0Þ is the initial free enstrophy. For

an initially disordered fluid with large �F
0 , Eq. (5) gives

�F � t�2 for a
ffiffiffiffiffiffiffi

�F
0

q

t � 1, as in the isotropic case pre-

dicted by Batchelor [16]. The conditions for turbulence to
be of sufficient strength to justify a similarity law such as
Eq. (4) are not entirely clear, although large�F

0 =�
F
mswould

seem favorable. This similarity decay of free enstrophy
differs from other measures of decay such as one-point
measurements of vorticity nonaxisymmetry [9] or
coherent-vortex scaling theory [38]. Whereas the latter

theories require detailed analysis of dynamic structures of
the flow, the similarity decay is a global phenomenology
lending itself to a broader class of flows.
We test this hypothesis by employing data from the

University of Delaware MP trap [39,40]. Electrons of
temperature T ’ 2 eV are confined inside a series of
conducting rings of radius R ¼ 2:88 cm and confinement
length Lc ¼ 36:0 cm. A uniform axial magnetic field
B ¼ 454 G provides radial confinement. Voltages of
Vc ¼ �80 V applied to end gate rings provide axial con-
finement. The rapid axial bounce motion of electrons
suppresses axial variations, allowing a 2D E� B
guiding-center drift description. Destructive measurements
of electron density involve lowering an end gate, allowing
the electrons to stream onto a CCD camera at one end of
the chamber; a time series of images is constructed by
holding the plasma for successively longer times.
The electron source was a spiral tungsten filament. The

filament voltage and the time during which the nearest end
gate was lowered (� 1 �s) were adjusted to produce initial
conditions which reflect the structure of the spiral filament;
this ‘‘streaming’’ of electrons into the trap without ma-
nipulation (via application of external fields) yields suffi-
cient spatial complexity to support turbulence. In such
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FIG. 1 (color). Top row: Vorticity images showing evolution of
data set 01. Bottom: Initial vorticity in four other data sets. Time
(�s) and peak vorticity (upper right, �s�1) are shown. Images
cropped to one-half the trap radius.
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FIG. 2 (color). Enstrophy versus time for the data sets in
Fig. 1.

PRL 105, 234501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

3 DECEMBER 2010

234501-2



cases the dynamics are characterized by many vorticies
and long filaments that interact and merge, leading to the
axisymmetric metastable state !ms [11]. An example of
this evolution is shown in the top row of Fig. 1; the bottom
row shows initial conditions for four other data sets. The
corresponding enstrophy decay curves are shown in Fig. 2.
Table I shows �0 and �ms for these five data sets (as well
as for data sets discussed later). Also analyzed are axisym-
metric ‘‘hollowed’’ initial conditions, where a bulk column
of charge in near-thermal equilibrium is hollowed out to
various depths. This initial condition is nonturbulent, but
subject to the Kelvin-Helmholtz instability [8,9]. The lin-
ear instability grows, leading eventually to an axisymmet-
ric state, but although enstrophy decreases, it is unclear if
the evolution becomes strongly turbulent.

We begin by analyzing the streamed data set 01 shown in
Fig. 1. The metastable state !ms is identified with the
experimental state at 1000 �s, and �ms is defined using
!ms. Note that 1000 �s is not so late that nonfluid-like
dissipative effects emerge [41], or that thermal equilibrium
is attained. This final time is used for all data sets. For
hollowed data sets, t0 is chosen at the onset of the decay
phase (� 100 �s); all others have t0 ¼ 0.

Comparing the free enstrophy �F and the prediction in
Eq. (5), we find the parameter a that produces the best
least-squares fit. Figure 3(a) shows this comparison for
data set 01. The similarity decay law fits the data very
well, with a mean-squared error of �2 � 6� 10�4.

We carried out similar procedures on 16 other data sets,
the last three starting from hollowed profiles. Despite the
variety of the initial conditions, most of these data sets are
fit well by Eq. (5), although the hollowed initial conditions
deviate significantly. To show this, we first plot �F=�F

0

versus the experimental time t� t0 in Fig. 3(b). The curves
clearly display some similarity, but the best fits to Eq. (5)
have different values of a; see Table I. However, when
�F=�F

0 is plotted against the adjusted nonlinear time

a
ffiffiffiffiffiffiffi

�F
0

q

ðt� t0Þ, all the curves collapse onto a single decay

curve, as shown in Fig. 3(c).
The best-fit parameters of these five data sets have an

average a � 0:1. Evidently the reciprocal global decay
time � overestimates the magnitude of the relaxation rate.
Intuitively, this seems related to suppression of nonlinear-
ity associated with the emergence of near isolated vortices
and near-axisymmetric states [17,18,28,42], analogous to
the nonlinear suppression due to Beltrami flows in 3D
turbulence [43]. This is qualitatively verified by observing
the five data sets in Fig. 1 ordered by decreasing a
(05; 01; 10; 08; 03); this sequence also gives roughly the
order for increasing level of vorticity localization or in-
creasing level of global axisymmetry. This relationship is
also seen in the other data sets.
As a final demonstration, the free enstrophy decay pre-

diction, Eq. (5), is rearranged to have a linear dependence

on the nonlinear time
ffiffiffiffiffiffiffi

�F
0

q

ðt� t0Þ, and the experimental

values of all available data sets are used to scatter plot the
(inverse) left-hand side versus the right-hand side in Fig. 4.
Here we do not optimize the parameter a, as in Fig. 3, but
instead we use the value of a ¼ 0:1. The streamed data sets
follow the similarity prediction for 2 orders of magnitude

of
ffiffiffiffiffiffiffi

�F
0

q

ðt� t0Þ. Only the hollowed profiles (top three

traces) deviate significantly from the trend line, and for
these, the theory may be inapplicable due to insufficient
turbulence strength [10]. For the fully turbulent cases, a

TABLE I. Experimental and fit parameters. � has units �s�2. Best-fit parameter is a [Eq. (5)]; �2 (� 10�3) is mean-squared
difference of data and best-fit curve. Last three data sets are hollow initial conditions as in [8,9].

Set 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

�0 0.290 0.423 0.569 0.772 0.867 0.740 0.620 0.359 0.298 0.234 0.115 0.418 0.375 0.548 1.04 0.723 0.540

�ms 0.183 0.277 0.397 0.582 0.610 0.561 0.399 0.211 0.172 0.129 0.059 0.284 0.218 0.382 0.939 0.620 0.428

a 0.086 0.100 0.052 0.034 0.101 0.101 0.058 0.074 0.082 0.077 0.149 0.030 0.032 0.043 0.016 0.010 0.008

�2
a 0.573 0.417 1.37 1.67 2.29 1.02 1.48 2.57 1.29 1.78 1.10 3.04 1.87 2.68 7.98 4.29 13.0
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FIG. 3 (color). Scaled free enstrophy versus (a),(b) experimental time and (c) adjusted nonlinear time. Panel (a) shows the data set 01
and best fit to Eq. (5), (b) and (c) show all data sets from Fig. 2.
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reasonable accounting of the rapid period of enstrophy
decay is provided in this simple theory, without any dis-
cussion of details of the flow.

We suggest several conclusions. First, in defining the
direct enstrophy cascade time scale, it is apparently rea-
sonable to separate from the total enstrophy the fraction
that is destined to be associated with the ‘‘most probable’’
quasiequilibrium state attained after many characteristic
dynamical times. This makes it possible to employ a
von Kármán-like similarity analysis even without a very
large initial enstrophy. When the initial enstrophy is large,
the proposed model exhibits a self-similar decay of ens-
trophy which mirrors Batchelor’s t�2 law. Second, experi-
mental evidence in the small initial enstrophy regime
points to validity of this similarity decay for a variety of
initial conditions. The results appear to depend on both the
initial degree of vorticity localization and the amount of
global axisymmetry of the initial conditions. This may be
useful in guiding future refinements of the phenomenology.
Finally, the successes of the hydrodynamic phenomenol-
ogy in describing 2D electron dynamics continue to accrue.
So far, serious discrepancies between 2D relaxation in
electron fluids and hydrodynamics have not emerged.
Future work may find it useful to explore the limits of
the analogy between E� B drift Penning trap dynamics
and 2D hydrodynamic turbulence by examining and com-
paring higher Reynolds number behavior, employing a
wider variety of experimental results, and comparing
higher order statistical quantities in the two cases. In
addition, the theoretical understanding of the source of
kinetic dissipation in the electron trap plasma remains a
wide open topic.
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