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We present a formulation of the nanoscale radiative heat transfer using concepts of mesoscopic physics.

We introduce the analog of the Sharvin conductance using the quantum of thermal conductance. The

formalism provides a convenient framework to analyze the physics of radiative heat transfer at the

nanoscale. Finally, we propose a radiative heat transfer experiment in the regime of quantized

conductance.
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It was discovered in the late 1960s that the radiative heat
transfer (RHT) between two metallic parallel plates can be
larger than predicted by using the blackbody radiation
form [1–3]. It is now known that this anomalous RHT is
due to the contribution of evanescent waves and becomes
significant when the distance separating the interfaces
becomes smaller than the thermal wavelength �th ¼ @c

kBT
,

where @ is Planck’s constant, kB is Boltzmann’s constant,
c is the light velocity, and T is the temperature. Using
the framework of fluctuational electrodynamics [4], Polder
and van Hove (PvH) were able to derive a general form
of the RHT accounting for the optical properties of the
media [5]. Since this seminal contribution, several reports
have been published in the literature [6–11]. A quantum-
mechanical derivation [12] has confirmed these results
obtained within the framework of fluctuational electrody-
namics. While the first papers considered metals, it has
been realized that the RHT at the nanoscale can be further
enhanced for dielectrics due to the contribution of surface
phonon polaritons [13,14]. Recent reviews can be found
in Refs. [15–18].

The first attempts to measure a heat flux between
metallic surfaces at room temperature and micrometric
distances have proved to be inconclusive [19,20].
Experiments in the nanometric regime have clearly dem-
onstrated the transfer enhancement [21,22]. Yet the lack of
good control of the tip geometry did not allow quantitative
comparison with theory. More recent experiments [23,24]
are performed by using silica, taking advantage of the flux
enhancement due to the resonant contribution of surface
phonon polaritons. A good agreement between PvH theory
and experiments has been reported [24].

The purpose of this Letter is to establish a link between
the PvH form of the radiative heat flux and the formalism
of transport in mesoscopic physics. It will help to develop a
more physical understanding of the RHT at the nanoscale,
which also clarifies how losses and nonlocal effects deter-
mine the maximal achievable heat flux [10]. Finally, we
will show that this reformulation raises the prospect of

observing quantized conductance for systems with sizes
on the order of the thermal wavelength �th.
We start our discussion with the PvH form of the RHT.

We consider a vacuum gap with width d separating two
homogeneous half-spaces labeled medium 1 and 2 [see
Fig. 1(a)]. Then, the heat flux is [5,16]
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where � ¼ ðkx; kyÞ and � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � �2

q
are the parallel

and normal wave vector, respectively, �ð!; TÞ ¼ @!=
½expð@!=kBTÞ � 1Þ� is the mean energy of a harmonic

oscillator, k0 ¼ !=c, r1;2j are the usual Fresnel factors for

s- or p-polarized waves, and the sum is carried out over
j ¼ sðTEÞ; pðTMÞ and accounts for the two polarizations.
In this expression, we have clearly separated the propa-
gating (� < k0) from the evanescent wave contribution
(� > k0). The first one can be shown to be described by
the usual radiometric approach [16]. In particular, the term
1� jr1j j2, which is the interface transmittivity, is exactly

the emissivity of the interface of medium 1. It is thus
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FIG. 1 (color online). Sketch of the conductance geometry:
(a) Two thermal reservoirs are separated by a vacuum gap with
width d; (b) two electron reservoirs with a voltage difference V
are connected through a nanowire.
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tempting to extend the definition of the emissivity to
evanescent waves. This has been proposed in Ref. [13],
where Imðr1j Þ was introduced as a generalized emissivity.

Obviously, the generalized emissivity is larger than 1 since
it accounts for an enhanced RHT. A drawback of this
approach is that it does not provide any physical insight
in the meaning of an emissivity larger than 1.

A different interpretation, regarding the evanescent
contribution only, was given by Pendry [8] by using the
single interface local density of states (DOS) Imðr1j Þ�
exp½�2 Imð�Þz�jz¼0 in the space ð�; z; !Þ. Here, the term
local refers to the fact that we introduce the DOS in direct
space at a distance z above the interface. In summary, the

first approach suggests to consider that Imðr1;2j Þ is a gen-

eralized emissivity, whereas the second approach empha-

sizes the fact that Imðr1;2j Þ is proportional to the local DOS.
The interpretation in terms of local DOS is interesting, as

it indicates that the enhancement of the RHT at the nano-
scale is due to an enhancement of the DOS. Hence, it would
be enlightening to develop a formulation of the RHT that
highlights the number of modes (NOM) involved. Such a
formulation has been developed in the context of charge
transport in mesoscopic physics and is known as Sharvin
conductance when the contact area is much larger than the
electron wavelengths and Landauer formalism when the
size is on the order of the wavelength so that the NOM
involved in the transport becomes discrete.

Before reformulating the heat flux in a Landauer-like
way, let us recall the structure of the electrical conductivity
in the mesoscopic regime. When considering that the
dephasing length and the mean free paths are much larger
than all the relevant length scales, the electrons can be
described by their wave functions. Hence, the conduction
through a constriction or nanowire [see Fig. 1(b)] can be
described by a scattering matrix that connects the incoming
channels to the outgoing channels. It follows that the
charge transport can be described by means of a sum
over all the modes [25,26]

I ¼ 2e
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where e is the electron charge, TnðEÞ is the transmission
probability of a mode n, and f1ðEÞ ¼ 1=fexp½ðE� EF �
eVÞ=kBT� þ 1g and f2ðEÞ ¼ 1=fexp½ðE� EFÞ=kBT� þ 1g
are the Fermi-Dirac distributions with EF the Fermi en-
ergy. For small applied voltages V, we obtain
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where 2e2=h is the quantum of conductance and f0 ¼ f2.
For temperatures kBT � EF, this result reduces to the
Landauer formula

I ¼ 2e2

h

X
n

TnðEFÞV: (4)

To derive such a formulation for the RHT case, we
consider a situation where the two temperatures are close
enough so that T1 ¼ T þ �T and T2 ¼ T assuming that
�T � T. Then, we can write the flux � as
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Here, we have introduced the notation

T12
j ð!;�; dÞ ¼
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where Dj ¼ 1� r1jr
2
j expð2i�dÞ is the Fabry-Pérot–type

denominator. For propagating modes, T12
j ð!;�; dÞ is the

two interfaces transmission factor (TF) and takes values in
the interval ½0; 1�. It follows that the heat flux is limited
by the blackbody result. Hence, the expression strongly
suggests to consider that T12

j ð!;�; dÞ is also a TF for the

evanescent modes. As shown in Ref. [8], T12
j is indeed

smaller than 1. This maximal value is reached if jr1j jjr2j j ¼
e2�d, which, for example, can be satisfied for s- and
p-polarized modes in the case of frustrated total internal
reflection [27] when considering dielectrics and also for
coupled surface modes (CSMs).
By comparing the expression in Eq. (3) with Eq. (5), one

can see that we have already formulated the heat flux
equation in a very similar manner. The sum over transverse
modes is given by the integral

R
d2�=4�2. In order to get a

manifestly Landauer-like structure, we need to integrate
the modes over all energies. We first introduce the dimen-
sionless variable u ¼ @!=kBT. Then, by interchanging the
order of integration we cast the heat flux in the form

� ¼ �2

3

k2BT

h

� X
j¼s;p

Z d2�

ð2�Þ2
�T12
j

�
�T; (7)

where �2k2BT=3h is the universal quantum of thermal
conductance [28,29]. Here, we have introduced the mean
transmission factor (MTF)

�T 12
j ¼

R1
0 dufðuÞT12

j ðu; �; dÞR1
0 dufðuÞ ; (8)

where fðuÞ ¼ u2eu=ðeu � 1Þ2 and
R1
0 fðuÞdu ¼ �2=3.

This is a new quantity which resembles the transmission
probability for the electrons in the Landauer formula in
Eq. (4). When dealing with electrons, only the TF at the
Fermi energy is relevant because of the particular form of
the Fermi-Dirac distribution. By contrast, when dealing
with bosons, we need to introduce a TF averaged over all
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energies. Let us stress that �T12
j is always smaller than 1.

This property follows directly from the same property of
T12
j and the definition of the MTF. Hence, we have now

a new interpretation of the physical meaning of the term

involving Imðr1;2j Þ in Eq. (1). Instead of interpreting

Imðr1;2j Þ as the local DOS or generalized emissivity of a

single interface, we consider now the two-interface system
(the gap) and define a TF averaged over all energies for a
mode with specified �. In this picture, the enhancement of
the heat flux appears as the consequence of the increase of
the NOM contributing to the RHT. We provide in Fig. 2(a)
a schematic representation of the modes in the ðkx; kyÞ
plane, from which it becomes clear that the number of
transverse modes diverges. For � < k0, we have the usual
thermal radiation due to propagating modes; for k0 < �<
nk0, there is a contribution of modes which can be viewed
as frustrated total internal reflection when dealing with
dielectrics. Finally, for � > nk0, we have the contribution
of CSMs confined in the gap. It remains to be studied under
which conditions the TF takes significant values.

A detailed study of the TF Tð!;�; dÞ is reported in
Ref. [30]. The key results are as follows. For a gap thick-
ness d larger than the thermal wavelength �th, the TF is
negligible for evanescent waves (k0 < �) and oscillates
between 0 and 1 with frequency for propagating waves.
It is a Fabry-Pérot–type behavior. For a gap thickness of
100 nm, the TF tends to 1 for both propagating waves
and waves with frustrated total reflection (k0 < �< nk0),
thereby contributing to a significant enhancement of
the flux. As the TF tends indeed to 1 for all frequencies
(for s and p polarization), the contribution of these modes
is simply given by the DOS � 2ðn2��2

th =4�Þ times the

thermal quantum of conductance in agreement with pre-
viously reported results [27,31].

The value of the TF Tð!;�; dÞ for CSMs has a more
subtle structure. It is essentially negligible everywhere in
the ð!;�Þ plane except along the surface mode dispersion
relation where it is close to 1 (see Figs. 1 and 2 in [30]).
Hence, after averaging over frequencies, the MTF drops by

2 orders of magnitude as seen in Fig. 3. We also see in
Fig. 4(a) that this drop is smaller for silica than for SiC.
This is because, in the case of silica, there are more differ-
ent surface modes contributing at different frequencies.
Despite the low value of the MTF for surface modes, the
number of additional surface modes is so large that the
RHT is dominated by the CSM contribution at a small
distance as seen in Fig. 4(b).
It is clear from the above discussion that the enhanced

flux is due to the contribution of surface modes with a large
value of �. In Ref. [30], we discuss the cutoff value of �
which limits the contribution of the CSMs in detail. It is
roughly given by 1=d as indicated in the graph of Fig. 3.
A more precise discussion shows [30] that the losses play
a key role in defining the exact position of the cutoff.
It is given for Tð!;�; dÞ at the surface resonance by � >
log½2=Imð�Þ�=d, which also sets a cutoff for the MTF.
We finally turn to the ultimate limit of the RHT. So far, it

seems that the RHT conductance can diverge as 1=d2, since
the DOS/ 1=d2. Yet, it is known that there is a cutoff value
for the spatial wave vectors of the phonons given by �=a,
where a is the lattice constant. This is equivalent to ac-
counting for nonlocal properties of the material [32,33].
We now discuss an immediate consequence of our

formulation. If we consider a system as depicted in

d
1 d)

c)

b)

c n c

a) ky

kx

ω
ω

FIG. 2 (color online). Illustration of the contribution of
(b) propagating modes (� < k0), (c) modes propagating in the
dielectric but evanescent in the gap (k0 < �< nk0), and
(d) evanescent modes confined in the gap (� > nk0).
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by choosing temperature T ¼ 300 K and two SiC [39] slabs. The
modes with � < nk0 have �T12

p � 1. The surface phonon polar-

itons with � > nk0 have a relatively small MTF but give the
dominant contribution to the heat flux due to the large number
of contributing modes. The MTF shows for very large � an
exponential cutoff / expð�2�dÞ.
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Fig. 5, we observe that the two wires have a finite trans-
verse cross section L� L. Hence, the electromagnetic
modes are quantized for L on the order of �th as shown
for surface plasmon polaritons in Ref. [34], and one ex-
pects to observe a radiative conductance of the gap with
a discrete NOM similar to the quantized conductance of
an aperture [35,36]. An experiment similar to the work
reported in Refs. [37,38] should be feasible.

In summary, we have presented a Landauer-like refor-
mulation for the nanoscale RHT putting it on the same
footing as the mesoscopic electron transport. In particular,
we have introduced a mean transmission coefficient which
is shown to fulfill all the properties needed to give a clear
understanding of the heat flux on the nanoscale in terms of
the DOS or NOM. In addition, we have proposed a near-
field heat transfer experiment for measuring the quantized
conductance.
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