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We theoretically investigate microwave transmission through a zero-index metamaterial loaded with

dielectric defects. The metamaterial is impedance matched to free space, with the permittivity and

permeability tending towards zero over a given frequency range. By simply varying the radii and

permittivities of the defects, total transmission or reflection of the impinging electromagnetic wave can

be achieved. The proposed defect structure can offer advances in shielding or cloaking technologies

without restricting the object’s viewpoint. Active control of the observed exotic transmission and

reflection signatures can occur by incorporating tunable refractive index materials such as liquid crystals

and BaSrTiO3.
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The field of metamaterials continues to flourish and
evolve, in part due to the recent interest and excitement
arising from potential applications involving invisibility
cloaking [1,2], perfect lenses [3], and slow light devices
[4]. One of the primary thrusts of metamaterials is the
design of electromagnetic (EM) structures that have a pre-
scribed response to the incident electric (E) and magnetic
(H) fields, characterized by the permittivity � and perme-
ability �. The vast number of metamaterials are structures
consisting of double negative index media (real parts of �
and � are negative) [5], single negative index media (real
part of � or� is negative) [6], epsilon zero media (real part
of � is zero), and matched impedance zero-index material
(MIZIM), where � and � both vanish over a narrow fre-
quency window [7,8]. Compared with the double negative
index and single negative indexmaterials, zero-indexmeta-
materials (ZIMs), whose permittivity and permeability are
simultaneously or individually equal to zero, have received
much less attention. As the experimental landscape is con-
tinually refined, many of these theoretical concepts once
viewed as high risk appear within grasp.

Structures involving ZIMs have been investigated ex-
perimentally and theoretically by several scientists [8–16].
The tunneling of EM waves through ultranarrow ZIM
channels has been demonstrated experimentally in the rf
regime [11,12]. Moreover, a subwavelength ZIM slit can
result in strong transmission of EM waves differing from
conventional Fabry-Perot resonances [14]. The infrared
transmission and reflectivity measurements taken long
ago [15] of silicon carbide (SiC) indicated a near-zero
index of refraction. The fabrication of metallodielectric
ZIMs in the microwave regime was reported [17], and a
stacked Drude checkerboard structure was created for IR
wavelengths [18]. If the ZIM is impedance matched to free
space, where � also vanishes, the corresponding MIZIM
can exhibit more dramatic properties. The idea of MIZIM
slabs as perfect lenses was discussed [19], and ‘‘nihility’’

was extended later to scattering by MIZIM cylinders and
spheres [20]. It was also shown theoretically that a MIZIM
can facilitate total transmission without changing the
phase, and act as a transformer that converts small-
curvature wave fronts into output beams with planarlike
wave fronts [16]. As investigations into the full phenomena
that can arise in MIZIMs is still incomplete, there are some
limited experimental results, including successful fabrica-
tion of a mid-IR MIZIM [21].
Our aim is to reveal how total reflection and total trans-

mission of an EMwave can occur by simply controlling the
geometrical and material properties of certain ‘‘defects,’’
consisting of either conventional dielectric rods or low loss
high-dielectric materials (like MgCaTiO3 or BaTiO3) ar-
bitrarily embedded in a MIZIM. The irrotational electric
and magnetic fields in the MIZIM permits complementary
analytical and numerical solutions to Maxwell’s equations.
Perfect transmission or reflection can be exploited through
variations in either the radius R of the defect, the frequency
of the wave, or the constitutive material values of the
defects. It is also shown that considerable field enhance-
ment can arise in extreme-dielectric defects. Finally, we
discuss a few of the possible applications for our proposed
system, including invisibility and perfect shielding.
We consider an EM wave incident from the left into the

structure illustrated in Fig. 1. TheH field is polarized in the
z direction, and the E field is y directed. For simplicity, we
consider the fundamental TEM mode [7]. The central
MIZIM layer is a Drude-like material with permittivity,
�1 ¼ 1�!2

p=½!ð!þ i�Þ�, and permeability, �1 ¼ 1�
!2

p=½!ð!þ i�Þ�. The plasma frequency is !p, and � is

related to the mean free path. The surrounding free space
layers correspond to regions 0 and 3. The defects in region 2
that are embedded in MIZIM consist of N cylinders
with the permittivity and permeability of the ith cylinder
(i ¼ 1; 2; 3; . . . ; N) equal to �2;i and �2;i, respectively. We

assume an expð�i!tÞ time dependence throughout, where
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! is the usual angular frequency. The EM wave in each
region must satisfy the Ampére-Maxwell equation,

E m ¼ ic

!�m
r�Hm; (1)

where c is the speed of light in vacuum and the integer m
denotes the region. If we consider the MIZIM region for
frequencies near !p, so that Re½�1� tends to zero (we take

� ¼ 0 for now), r�H1 must vanish in order to keep the
electric field finite [10], resulting in a quasistatic situation.
For our z invariant geometry and incident polarization
state, this implies that rHz

1 ¼ 0, orHz
1 is a constant, which

we denote by H1. Because of this condition, any EM
scattering from region 2 will result in a net global shift in
the magnetic field of region 1 rather than any local spatial
fluctuations. For our configuration, Maxwell’s equations
demand that the EM field in each region must also obey the
vector Helmholtz equation,�

@2

@x2
þ @2

@y2
þ!2

c2
�m�m

�
�m ¼ 0; (2)

where �m � ðEm;HmÞ. In the limit of �m or �m vanish-
ing, the Helmholtz equation reduces to the Laplace equa-
tion, where quasistatic methods can be utilized. In general,
we write Hm ¼ ẑHz

mðx; yÞ, and the electric field as Em ¼
x̂Ex

mðx; yÞ þ ŷEy
mðx; yÞ. For the case of plane wave inci-

dence at oblique angles, the use of a ZIM slab as an angular
filter has been discussed [7]. In region 0 the H field is the
sum of incident and reflected waves that satisfy (2)

H 0 ¼ ẑH0½eik0ðxþd=2Þ þRe�ik0ðxþd=2Þ�; (3)

and from (1), the corresponding electric field is

E 0 ¼ ŷH0½eik0ðxþd=2Þ �Re�ik0ðxþd=2Þ�; (4)

where R is the reflection coefficient, k0 is the wave
vector of free space (k0 ¼ !=c), and H0 is a constant
coefficient representing the incident field amplitude.

Similarly, in region 3, the magnetic field is written asH3 ¼
ẑH0T expðik0½x� d=2�Þ, with corresponding electric field
E3 ¼ ŷH0T expðik0½x� d=2�Þ, and where T is the trans-
mission coefficient. Equating the tangential components
of the EM field at the vacuum-MIZIM interfaces (x ¼
�d=2 and x ¼ d=2) reveals a simple relationship between
the magnetic field coefficients: ðRþ 1ÞH0 ¼ H1 and
TH0 ¼ H1. For a given arrangement of (nonoverlapping)
cylindrical defects in the MIZIM, complicated magnetic
coupling is avoided, thus permitting a closed form solution
to Eq. (2). After implementing Dirichlet boundary condi-
tions at the surface of each defect, we obtain the magnetic
field distribution within all N defects,

H 2 ¼ H1

XN
i¼1

J0ðk2;iriÞ
J0ðk2;iRiÞ ẑ; (5)

where Jn is the Bessel function of the first kind and order n,
and the wave vector in the ith cylinder k2;i satisfies the

dispersion relation, k2;i � k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2;i�2;i

p
. The relative coor-

dinate ri conveniently describes points within each defect

via ri ¼ j�i � �0
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x0iÞ2 þ ðyi � y0iÞ2

q
, where x0i

and y0i locate the centers of each cylinder relative to the
prescribed origin of coordinates (see Fig. 1). The sum
implies the domain is restricted to the defects. It is straight-
forward to calculate the electric field inside the defects
using Eqs. (5) and (1):

E 2 ¼ iH1

XN
i¼1

ffiffiffiffiffiffiffiffi
�2;i

�2;i

s
J1ðk2;iriÞ
J0ðk2;iRiÞ �̂i; (6)

where �̂i is the azimuthal unit vector for the ith cylinder.
To conveniently determine the transmission features,

in the MIZIM without intricate details of the electric field
in that region, we employ the Faraday-Maxwell equation,
Hm ¼ c=ði!�mÞr� Em. It is evident from this expression
that as �1 and �1 tend to zero, E1 becomes irrotational.
Subdividing the multiply connected MIZIM region via the
appropriate cuts, and applying Stokes’ theorem (integration
along infinitesimally close cuts cancel), gives the conser-
vation requirement,

H
@C E � dl þP

N
i¼1

H
@C2;i

E2;i � dl ¼ 0,

where @C is the boundary enclosing the whole MIZIM
region. After calculating the first line integral above, we
have for the transmission coefficient,

T ¼ 1

1� ð1=2wH1Þ
P

N
i¼1

H
@C2;i

E2;i � dl i; (7)

where @C2;i denotes the boundary of each defect. Inserting

the E field (6) gives

T ¼ 1

1� ði�=wÞPN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2;i=�2;i

q
½RiJ1ðk2;iRiÞ=J0ðk2;iRiÞ�

:

(8)

According to Eq. (8), strong reflection of the incident
wave arises if the sum in the denominator diverges (so
that T ! 0). In fact, this can occur if only a single defect
satisfies J0ðk2;iRiÞ ¼ 0, regardless of the number of other

FIG. 1 (color online). Schematic of the proposed vacuum-
MIZIM-vacuum metamaterial structure containing an arbitrary
arrangement ofN defects (region 2). The propagation direction of
the EMwave is along the x axis. The centralMIZIM layer (with �1
and�1) in region1has thicknessd in thex direction andwidthw in
the y direction. The ith cylindrical defect has radius Ri, permit-
tivity �2;i, and permeability�2;i. The upper and lower boundaries

correspond to a perfectly conducting metal or perfect magnetic
boundary, depending on the polarization of the incident wave.
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defects or their material properties, �2;i and �2;i. To high-

light this phenomenon further, consider Eq. (5), with k2;iRi

chosen such that denominator of (5) is zero. Then on
physical grounds, the magnetic field inside region 1 must
vanish to maintain a finite value forH2. Because theH field
in region 1 is zero, the EM wave is totally reflected, or
R ¼ �1 [see expression above Eq. (5)]. Thus, one can
optimize the system for the many combinations of fre-
quency, defect size, and �2;i and �2;i that yield zeros to

J0ðk2;iRiÞ. A key aspect is that the E and H fields in the

defects are finite. It may be possible to also obtain perfect
reflection by coating a cylinder with perfectly magnetic
conducting layers [22], but at the cost of eliminating the
internal defect field.

The denominator in Eq. (8) also reveals how to achieve
perfect transmission of EM energy through the structure.
By choosing suitable combinations of k2;i and Ri that yield

roots to J1ðk2;iRiÞ ¼ 0 (for all i), E1 at the boundary

between regions 1 and 2 will also be zero. Each term in
the summation in Eq. (8) therefore vanishes and perfect
transmission ensues. This criteria also ensures that the
perfect transmission phenomenon is insensitive to the
width d of the MIZIM [see Eq. (8)]. This differs from a
single ZIM slab, where the transmission varies inversely
with the electrical size of the slab [7].

We now complement our analytical results with numeri-
cal simulations from a commercial finite element software
package [23]. In what follows we take the spatial domain
to have dimensions w ¼ 44 mm and d ¼ 60 mm (for the
cases studied here, the results are relatively insensitive
to these values). Unless otherwise stated, the excitation
source has a frequency of f ¼ 15 GHz and all defects
are nonmagnetic (�2;i ¼ 1). Our investigation first centers

around the MIZIM region containing three arbitrarily ar-
ranged dielectric defects, each with the proper radii and
material parameters to yield perfect reflection. In Fig. 2(a),
the magnetic field distribution is shown for defects with
radii R1 ¼ 4 mm, R2 ¼ 8 mm, and R3 ¼ 12 mm. The cor-
responding permittivities are �2;1 ¼ 3:66, �2;2 ¼ 11:86,
and �2;3 ¼ 15:67. The plot clearly demonstrates complete

reflection of the incident radiation, despite the impedance
matching; an unexpected result that holds for even electri-
cally small subwavelength defects (Ri=�0 � 1). This is
evident by considering the first zero of the Bessel function
for a single defect (i ¼ 1): R=�0 � 0:382 74=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2;1�2;1

p
.

In Fig. 2(b), the E field is shown for the same parameters
in 2(a). Although both theE andH field are curl-free in the
MIZIM, the electric field exhibits more complicated be-
havior, since its 2D polarization state can vary in x and y.
As alluded to above, if only one defect is tailored to satisfy
J0ð2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2;i�2;i
p

Ri=�0Þ ¼ 0 (no matter how electrically

small), the other two defects can have arbitrary geometric
and material composition without destroying perfect re-
flectivity. This surprising outcome does not depend on the
relative location of a given set of defects due to the quasi-
static nature of the EM field in the long wavelength limit.

In contrast, we now consider the same type of MIZIM
and defect configuration to illustrate how incoming waves
can undergo complete transmission. In Fig. 3(a), the
z component of the magnetic field is shown as a function
of position throughout the structure. The parameters are the
same as previously, with only �2;i adjusted to satisfy van-

ishing of the sum in Eq. (8). The magnetic field is of course
uniform in the MIZIM with standing Bessel waves in the
defects. Figure 3(b) is the corresponding E field with its
vector field distribution. The electric field plot shows that
after the incident wave penetrates the metamaterial, it
immediately becomes distorted in a nontrivial fashion.
Moreover, the E field in the defects is oriented purely in

the �̂ direction [see also Eq. (6)], vanishes at the boundary,
and then abruptly transitions to a radial field. Just as in
Fig. 2(b), the E field among defects exhibits a complicated
spatial dependence. In Fig. 3(c), the magnitude of the
(time-averaged) Poynting vector, S ¼ c=ð8�ÞRe½E�
H��, is shown with vector field overlays. The energy flow
tends to ‘‘wrap around’’ the defects, and is compensated by
higher energy flux in regions exterior to the defects to
satisfy energy conservation. In all, Figs. 3(a)–3(c) demon-
strate the incident wave emerging from the MIZIM or
defect structure in its original form. This type of structure
can thus provide an alternative cloaking scenario that does
not involve distorting the EM field via transformation
media [24]. It also differs from the mechanism behind
scattering cancellation [2]. The underlying physics resides
in the long phase variation and ‘‘tunneling’’ effect [10]
inherent to near-zero index materials. The defect’s EM
signatures of the impinging source wave may also serve
as a type of sensor, serving as an ‘‘observation window’’
into the surroundings as mentioned in other contexts [2,25].

FIG. 2 (color online). Perfect reflection. (a) The magnetic field
distribution for an arrangement of three defects embedded in a
MIZIM. The radii are R1 ¼ 4 mm, R2 ¼ 8 mm, and R3 ¼
12 mm with respective materials �2;1 ¼ 3:7, �2;2 ¼ 11:9, and
�2;3 ¼ 15:7. The E field magnitude is shown in (b) with its

associated vector field distribution (higher field values in the
MIZIM occasionally result in some vectors overlapping with an
adjacent defect).
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The transmitted power as a function of the rod geometry
or electrical response can yield further insight into the role
that defects play in transmissivity and reflectivity enhance-
ment crucial in the cloaking or shielding of an object. In
Fig. 4(a), the transmission (S21) is plotted as a function of

the material parameter K, where K � ffiffiffiffiffiffiffiffi
�2;2

p
. Similar results

follow for variations in the defect radius. Without loss of
generality, we vary only the intermediate sized defect
(8 mm). The transmission peaks coincide with the corre-
sponding Bessel function zeros, i.e., when J1ðk2;iRiÞ ¼ 0.
Likewise, reflection dips occur where J0ðk2;iRiÞ vanishes
(as does the magnetic field in the MIZIM). Not surprisingly,
incorporating a small amount of loss reduces the effect
somewhat without shifting the location of the peaks
[Fig. 4(b)]. The close proximity of the maxima and minima
in the transmission spectra might be accessible via active
tuning of the defects in real time through inclusion of
liquid crystals or BaSrTiO3, creating a potential host of
reconfigurable devices [26]. For shielding technologies,
subwavelength defect cavities can contain elements that
have the effective material parameters necessary for perfect
reflection.
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FIG. 4 (color online). (a) Transmission (S21) versus K (see
text) of the 8 mm defect for the three defect system in Fig. 3. The
effects of loss are shown in (b) for �=!p ¼ 0:001 (solid line),

0.01 (dashed line), and 0.05 (dotted line).

FIG. 3 (color online). Various field profiles illustrating perfect
transmission. In (a) the magnetic field pattern is shown for the
same setup as Fig. 2 but with the modifications �2;1 ¼ 9:3, �2;2 ¼
16:4, and �2;3 ¼ 19:1. In (b) the corresponding E field is shown

(higher field values in the MIZIM occasionally result in some
vectors overlapping with an adjacent defect). The power flow is
illustrated in (c) with the Poynting vector map (time averaged
over one period) and filled contours representing its magnitude.
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