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We study two-color parametric nonlinear modes in waveguide arrays with a quadratic nonlinear

response. We predict theoretically and observe experimentally a new type of phase transition manifested

in an abrupt power-controlled change of the mode structure from unstaggered to staggered, due to the

interplay of localization and synchronization in parametrically driven discrete systems.
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Synchronization of oscillations and wave localization
are two fundamental nonlinear phenomena that have
been driving the field of nonlinear dynamics for decades.
Synchronization and phase locking [1] are known to exist
in systems of different physical origin due to external
driving and coupling between elements. Examples include
the synchronous flashing of fireflies and the pulsation of
laser arrays [2,3]. On the other hand, the localization of
waves in nonlinear lattices, such as waveguide arrays, is
also determined by coupling between the individual lattice
sites [4]. As intersite coupling and nonlinearity govern the
two phenomena, a natural question is if they can be linked
together and what kind of novel fundamental effects can
arise due to their interplay.

In this Letter, we reveal a new type of phase transition in
nonlinear lattices occurring due to the interplay of local-
ization and synchronization. We expect that this phenome-
non can appear in various physical contexts, and we
demonstrate its occurrence in optics where we obtain
experimental evidence of the effect by directly monitoring
laser beam reshaping. Specifically, we consider laser beam
propagation through an array of closely spaced optical
waveguides in media with quadratic nonlinearity that fa-
cilitates frequency conversion and energy exchange be-
tween the fundamental wave (FW) and second-harmonic
(SH) beams. In such structures, the SH dynamics is gov-
erned by two mechanisms of energy exchange [Fig. 1(a)]:
(i) an effective driving force by the FW [5] at the same
lattice site and (ii) direct coupling of SH waves between
the lattice sites due to the overlap of the neighboring
waveguide modes. We show that each of these mechanisms
could lead to synchronization of SH dynamics and forma-
tion of different phase patterns. Mechanism (i) is dominant
when the FW (and the corresponding effective driving
force) extends over many lattice sites, whereas
mechanism (ii) dominates when the FW exhibits nonlinear
self-trapping to a single lattice site. We specially design
our experimental conditions to observe this interplay,

overcoming for the first time the constraint of all previous
experiments where the second mechanism was suppressed
due to the inhibition of linear coupling for the SH modes
[4]. The key observation of our work is that as the optical
power is increased and the beam becomes more localized,
the output beam profile at the second harmonic exhibits a
sharp transformation from in-phase (unstaggered) to out-
of-phase (staggered) patterns between the neighboring
waveguides. We show that the effect of such a phase
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FIG. 1 (color online). (a) Scheme of the investigated system.
(b) Sketch of the periodically poled lithium niobate sample
depicting the refractive index profile. (c) Intensity profiles of
the FW and SH modes. (d) Phase mismatch dependence on the
FW wavelength. (e) Dispersion relations of the FW (left) and SH
(right) modes.
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transition on the output beam profile can be gradually
adjusted simply by shifting the position of the input
beam with respect to the lattice. These results demonstrate
a generic phenomenon of localization-controlled phase
locking, which opens up new possibilities for manipulating
oscillations in nonlinear systems, including all-optical
phase control of beams in photonic structures.

We study beam dynamics in an array of coupled wave-
guides in periodically poled lithium niobate [Fig. 1(b)] that
features strong quadratic nonlinear response. To demon-
strate the existence of a phase transition, we explore the
nonlinear interaction between the FW00 and SH02 modes,
whose intensity profiles are shown in Fig. 1(c). Both of
these modes show linear coupling of comparable strength.
This is in contrast to all previous experiments that utilized
the nonlinear interaction between FW00 and SH00 but with
negligible linear coupling of the SH00 modes due to their
strong localization. The spatial beam evolution in such
arrays can be modeled by a system of normalized equations
for the mode amplitudes at the individual waveguides [4]:

idzAn þ cFWðAnþ1 þ An�1Þ þ A�
nBn ¼ 0;

idzBn þ cSHðBnþ1 þ Bn�1Þ � ��Bn þ A2
n ¼ 0:

(1)

Here z is the propagation distance normalized to zs, dz
denotes the derivative with respect to the propagation
direction, and An and Bn are the normalized FW and SH
mode amplitudes in the nth waveguide, respectively. Note
that the total power in the array P ¼ PFW þ PSH is con-
served, where PFW ¼ P

njAnj2 and PSH ¼ P
njBnj2. The

real coefficients cFW;SH ¼ zs�=ð2Lc
FW;SHÞ determine the

coupling strength between the neighboring waveguides,
where Lc

FW;SH are the physical coupling lengths. The phase

mismatch between the FW and SH waves (accounting for
the periodic poling) is characterized by the value of ��.
Tuning-curve measurements show that �� depends on the
FW frequency as shown in Fig. 1(d).

In the linear regime the beam dynamics is governed by
the dispersion relations for the Bloch modes of the lattice
[6]: AnðzÞ ¼ A0ðz ¼ 0Þ expðikFWnþ i�FWzÞ for the FW
and BnðzÞ ¼ B0ðz ¼ 0Þ expðikSHnþ i�SHzÞ for the SH.
Here �FW ¼ 2cFW cosðkFWÞ and �SH ¼ 2cSH cosðkSHÞ �
��. Characteristic dispersion relations are schematically
shown in Fig. 1(e). For propagation constants outside the
shaded bands, the linear waves exhibit evanescent decay

due to the photonic band gap [7]: An ¼ ��jnj
1 and Bn ¼

��jnj
2 , where �j ¼ ½1þ ð1� �2

j Þ1=2�=�j with �1 ¼
2cFW=�FW and �2 ¼ 2cSH=ð�SH þ ��Þ. We note that
for propagation constants below the bands (�FW <
�2cFW and �SH <�2cSH ���), �j < 0; i.e., the evanes-

cent waves are staggered, with � phase oscillations be-
tween neighboring waveguides.

Next, we demonstrate that nonlinear parametric cou-
pling of FW and SH waves can modify the phase pattern
of the propagating waves. We note that most efficient SH
generation occurs when the waves are spatially localized,

due to enhanced local field intensities. Stronger localiza-
tion occurs at higher optical powers due to self-focusing.
In order to reveal the generic relation between the non-

linear localization and phase locking, we first analyze the
stationary localized states or fixed points of the system.
Their power dependence provides insight into the bifurca-
tion properties, revealing possible phase transitions. These
solutions have the form AnðzÞ ¼ Anðz ¼ 0Þ expði�zÞ and
BnðzÞ ¼ Bnðz ¼ 0Þ expð2i�zÞ [4,8]. Here � is a real pa-
rameter, which simultaneously defines the FW (�FW ¼ �)
and SH (�SH ¼ 2�) propagation constants due to non-
linear synchronization. By substituting these expressions
into Eqs. (1), we obtain a set of nonlinear equations for the
real amplitudes of FW and SH. Whereas the solutions of
these equations can be found only numerically, we identify
the phase transition effect analytically by analyzing the
tails of localized states, where jAnj ! 0 and jBnj ! 0 for
jnj � 0. The solution for the FW tail is the same as for

linear evanescent waves: An � ��jnj
1 . For the SH wave, the

nonlinear term representing the effective FW driving force
cannot be neglected even in the small-amplitude limit. We
perform asymptotic analysis and derive asymptotic expres-

sions for the SH beam tails: Bn � ��jnj
2 if j�2j< �2

1 and

Bn � ð�2
1Þ�jnj if j�2j> �2

1. In the first case, the SH tail
profile corresponds to a linear evanescent wave solution,
whereas in the second case the SH tail is fully determined
by the FW. A nontrivial phase transformation occurs when
the propagation constant is below the bands, �<�l ¼
minð�2cFW;�cSH ���=2Þ, since in this case �j < 0.

While the FW tails are always staggered, the SH tail
exhibits a phase transition at

�s� ¼�c2FWc�1
SH �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4FWc

�2
SH þ 2c2FW ���c2FWc�1

SH

q
: (2)

The SH tails are staggered for �<�s� and �>�sþ and
unstaggered for �s� <�<�sþ. Importantly, for weak or
zero coupling of the SH mode (cSH ’ 0), �s� diverges and
no phase transition is present. Therefore, in all previous
experiments with quadratic waveguide arrays, no such
phase transition could be observed. Under our experimen-
tal conditions, the coupling lengths are practically constant
in the frequency range around �� ¼ 0, with values Lc

SH ’
Lc
FW ’ 20 mm. By choosing the scaling coefficient zs ¼

2Lc
FW=�, the corresponding normalized coupling constants

are cFW;SH ’ 1.
The SH structure in the center and in the tails of the

solutions can be different. Figure 2(a) presents the numeri-
cally calculated parameter regions for odd-type solutions
(centered on a lattice site [4,8]), where the boundaries for
phase transitions in the tails and for the entire soliton are
indicated. Figures 2(b) and 2(c) show the intensity and
phase profiles of the odd-type solutions vs � for ��¼1.
For low absolute values of �, the FW component of the
solution is staggered and the SH component is unstaggered.
If the value of � is decreased below �s�, the FW compo-
nent becomes very narrow. Hence the SH is driven only at a
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few waveguides and becomes independent of the FW com-
ponent. Here the SH component undergoes a phase tran-
sition to the staggered state. Such a transition has never
been shown before, although soliton solutions with
staggered-staggered and staggered-unstaggered FW and
SH components have been reported [7–9]. Unambiguous
signatures of the phase transition are observed in the spatial
Fourier spectrum [Fig. 2(d)]. While the FW spectrum is
always confined around the edge of the Brillouin zone
(kFW ’ ��), the SH Fourier spectrum switches between
the center and the edge of the Brillouin zone, correspond-
ing to a transition from an unstaggered to a staggered
profile. It is relevant to note that, while multicolor discrete
staggered solitons have been observed for polychromatic
light [10], no phase transition of the localized states was
present due to the incoherent coupling of the spectral
components. Thus, the phase transition predicted here is
a unique feature appearing due to the parametric process
and the energy exchange between spectral components.

Figure 2(e) shows the soliton power corresponding to
Figs. 2(b)–2(d). The monotonic dependence of the power
on the propagation constant is generic for all soliton fam-
ilies exhibiting the phase transition, since they all bifurcate
from the FW band edge. Such solitons are stable [8]. For
values of the propagation constant below the phase

transition threshold, the SH power of the solution is
much smaller than the FW power [Fig. 2(f)], and indeed
in this regime the SH is fully driven by the FW.
We also analyze even-type solutions, where the FW

profile is centered between neighboring lattice sites [4,8].
We find that, similar to the odd solutions, a phase transition
occurs for the SH tails; see Fig. 3. However, the SH
amplitudes at the two central sites are forced to have the
same phase due to the even symmetry. Accordingly, the
energy is always concentrated in the center of the Brillouin
zone [Fig. 3(c)]. This demonstrates the possibility to par-
tially suppress the phase transition. Although the even
solitons exhibit symmetry-breaking instability and tend
to transform to odd solitons [8], we confirm below that
the instability develops relatively slowly such that the even
symmetry is preserved in the experiments.
Next we study the predicted phase transition experimen-

tally. In our experiments, only the FW beam is launched
into the structure, leading to dynamical reshaping involv-
ing generation of SH and focusing. Nevertheless, the key
predictions based on the analysis of stationary solutions are
fully confirmed. We excite the array with 5.2 ps pulses
generated by a tunable optical parametric amplifier at FW
wavelengths around 1500 nm. The beam is shaped into an
elliptic input beam with a horizontal (vertical) FWHM of
63 ð2:8Þ �m. To obtain the staggered FW profile, the beam
is tilted at the Bragg angle. The input power, controlled
with a half-wave plate and a polarizer, is monitored before
coupling to the sample. The array consists of 101 parallel
waveguides with a pitch of 15 �m, made by titanium
indiffusion in a 71-mm-long periodically poled lithium
niobate crystal [11]. The sample is contained in an oven
and heated to 220 �C to prevent photorefractive effects.
After the sample, the powers of the transmitted FWand the
generated SH components are measured and their intensity
distributions are recorded by an InGaAs and a CCD cam-
era, respectively. To obtain the spatial Fourier spectrum of
the SH, we employ a lens and an additional CCD camera.
The upper row of Fig. 4 shows results of the power-

dependent measurement of the SH Fourier spectrum for
different phase mismatches, as determined by the input
wavelength in accordance with Fig. 1(d). For low input
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powers, the SH Fourier spectrum is concentrated around
kSH ¼ 0, 2�, corresponding to unstaggered SH. For FW
input powers above a mismatch-dependent threshold, stag-
gered SH components are generated at kSH ¼ �. This is an
unambiguous signature of the localization-controlled
phase transition, as found for the stationary states.

To validate the interpretation of the experimental results
and to explain possible differences to the stationary case,
we also carry out simulations of the time-dependent
coupled mode equations including group velocity mis-
match and pulse dispersion [12]. The simulation results
are plotted in the bottom row of Fig. 4 and agree well with
the measured data. Measured and simulated FW peak
power thresholds for a phase transition of the SH show a
decrease from 7.5 kW for �� ¼ �25 to 5.5 kW for �� ¼
1. In contrast to the predictions for stationary solutions, the
SH transformation is not complete, since the wings of the
pulse remain in their initial state. Thus we always measure
nonzero SH powers at kSH ¼ 0; 2�.

Another remarkable feature found in the stationary so-
lutions is the absence of the complete phase transition for
even symmetry (see Fig. 3). Figure 5(a) shows a set of
experimental results for different transverse shifts of the
sample with respect to the broad input beam. The SH

spectral power at kSH ¼ � depends strongly on the posi-
tion of the input beam.When the excitation is centered on a
waveguide (odd), staggered SH is generated according to
Fig. 4. For even excitation, centered between two wave-
guides, the SH power at kSH ¼ � vanishes. This shows that
the symmetry dependence of the phase transition found in
the stationary solution is a robust generic property.
The comparison with the time-dependent simulations
[Fig. 5(b)] again shows good agreement. Deviations be-
tween measurements and simulations are due to sample
and input coupling inhomogeneities as well as to the
general restrictions of the coupled mode equations.
In conclusion, we have predicted theoretically and dem-

onstrated experimentally an abrupt power-controlled
change of the SH field structure in quadratic nonlinear
waveguide arrays from unstaggered to staggered phase
profiles. The demonstrated effect of a symmetry-controlled
phase transition offers great flexibility for tailoring phase
structures, which may be further extended to other types of
localized solutions, including twisted and vortex states
[4,13]. The observed localization-induced phase transition
is a generic phenomenon, and we anticipate that it can also
occur in other nonlinear discrete systems such as Bose-
Einstein condensates on optical lattices and gene networks
in living cells [14].
The authors thank W. Sohler for sample preparation.
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