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The interaction between plasmonic nanoparticles is investigated by means of transformation optics. The

optical response of a dimer can be decomposed as a sum of modes whose resonances redshift when the

nanoparticles approach each other. The extinction and scattering cross sections as well as the field

enhancement induced by the dimer are derived analytically taking into account radiation damping.

Interestingly, some invisibility dips occur in the scattering spectrum and originate from a destructive

interference between each surface plasmon mode.
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The interaction between metallic nanoparticles has
attracted a wide range of interest for the past ten years.
The physics of this interaction is rich and opens nice
perspectives for applications, such as single molecule
detection [1,2], solar cells [3], or high harmonic generation
[4]. In a dimer of metallic nanoparticles, the localized
surface plasmons (LSPs) supported by each monomer
can interact between each other: several resonances may
arise in the visible or near-infrared spectra [5] and lead to
a drastic field enhancement in the narrow gap separating
the two nanoparticles [6]. An elegant physical picture to
describe this interaction is the plasmon hybridization
model [7]. In analogy with molecular orbital theory, the
dimer plasmons can be viewed as bonding and antibonding
combinations of the individual nanoparticle plasmons.
However, albeit elegant, the plasmon hybridization picture
is a limited tool: numerical simulations are still needed to
calculate the optical response of a dimer.

Recently, an original approach based on transformation
optics has been proposed to derive analytically the optical
response of complex nanostructures [8]. It consists in
finding a conformal map that transforms the plasmonic
nanostructure under investigation into a simpler plasmonic
system that can be solved analytically. In this Letter, this
strategy is applied to investigate the interaction between
plasmonic nanoparticles by considering the example of a
nanowire dimer. Note that conformal mapping has also
been used in the past to study the interaction between
dielectric nanoparticles [9] in the context of effective
medium theory [10]. The dimer problem can be solved
by mapping it onto a system consisting of an array of
dipoles sandwiched between two semi-infinite metal slabs
(see Fig. 1). The electric field can be decomposed as a sum
of modes denoted by a discrete angular momentum n, in
agreement with the hybridization picture. Each mode may
give rise to a resonance which is redshifted when the two
nanowires approach each other. The extinction and scat-
tering cross sections as well as the field enhancement
induced in the near-field of the dimer are expressed analyti-
cally taking into account radiation damping. Interestingly,

the scattering spectrum displays some invisibility dips
resulting from the destructive interference between the
modes supported by the dimer. At such frequencies, the
dimer can harvest light efficiently and focus its energy at
the nanoscale without any far-field scattering. This feature
can be a promising alternative to the concept of sensor
cloaking [11]: a dimer can receive and transmit informa-
tion to a molecule placed in its near field, while its presence
cannot be detected in the far field.
Our original system is an array of line dipoles oriented

along the x axis and aligned along the y axis, with pitch 2�,
located in a thin slab of insulator of thickness d surrounded
by two semi-infinite slabs of plasmonic material for
x <�d=2 and x > d=2 [Fig. 1(a)]. Now we apply the
following conformal transformation,

FIG. 1 (color online). (a) Two semi-infinite metallic slabs
separated by a thin dielectric film support SPs that couple to
an array of dipoles � (blue arrows). The array pitch is 2�.
(b) The transformed material of (a) is a pair of cylinders of
diameter D, separated by a narrow gap �. The dipole sources �
are transformed into a uniform electric field E0

0.
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z0 ¼ g=½expðzÞ � 1�; (1)

z ¼ xþ iy and z0 ¼ x0 þ iy0 are the usual complex number
notations in the original and transformed frames, respec-
tively.g is an arbitrary constant. The transformedmaterial is
a dimer of nanowires of diameter D ¼ g= sinhðd=2Þ sepa-
rated by a gap � ¼ g tanhðd=4Þ [see Fig. 1(b)]. The ratio
� ¼ �=ð2DÞ will be a key parameter in the following.

The transformation of the sources is also shown in
Fig. 1. The original dipoles � are transformed into a
uniform electric field E0

0 ¼ ð2��0gÞ�1�. Note that we

made the choice of an electric field E0
0 polarized along x0

since � is assumed to be aligned along x. Actually, this
polarization is by far more efficient to excite surface
plasmon (SP) modes than a polarization along y0 [8].
Note also that in the literature, most of the experimental
work dealing with metallic nanowires considers SPs prop-
agating along the nanowire axis [12,13] and not in the
transverse plane. We shall assume that the dimensions of
the cylinder pair are sufficiently small that the SP modes
are well described in the near-field approximation. The
uniform electric field E0

0 can then be considered as

due to an incident plane wave. Furthermore, in this case,
the dielectric properties of the nanostructure are the same
as those of the slab from which it is derived. Also preserved
under the transformation is the electrostatic potential.

The mathematics of the conformal transformation
closely links the physics at work in each of the very differ-
ent geometries. In Fig. 1(a), the array of dipoles pumps
energy into the SP modes supported by two semi-infinite
metallic slabs. This implies a discrete modal structure for
this system: only integer spatial frequencies n can be
excited among the overall k spectrum. The same modes
are excited by the incident field E0

0 in the transformed

geometry [Fig. 1(b)]: only LSP modes displaying an inte-
ger number n of spatial periods when propagating around
each nanowire can be excited. The transformation shown in
Fig. 1 tells us that these modes couple to each other in the
narrow gap separating the two nanoparticles: their wave-
length and velocity decrease, leading to an important field
enhancement at this location. However, contrary to the
kissing cylinders [8], their velocity does not vanish; hence,
the LSPs turn infinitely around the nanoparticles before
being absorbed. This explains their resonant behavior.
After this brief qualitative account, we now present the
results of our analytical theory.

As shown in a previous study [8], the extinction cross
section �ext of the cylinder pair can be deduced in the
quasistatic limit from the power absorbed by each dipole in
the original frame. Moreover, radiation damping in the
transformed geometry [Fig. 1(b)] can be represented by a
fictive absorbing particle in the original frame [14]. It
yields the following expression for �ext:

�ext ¼ Im

�
16�k0�ð�þ 1ÞD2�

1� i2��ð1þ �ÞD2k2o�

�
; (2)

with

�¼ �� 1

�þ 1

Xþ1

n¼1

n

ð ffiffiffiffi
�

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ�

p Þ4n � ð�� 1Þ=ð�þ 1Þ ; (3)

k0 ¼ !=c0 is the wave number in vacuum. The effect of
radiation damping appears in the denominator of Eq. (2). In
the quasistatic limit (D0 < 20 nm), radiation damping is
negligible and �ext is strictly equal to the absorption cross
section. The parameter � in Eq. (3) displays the sum of
each contribution due to the LSP modes supported by the
cylinder pair and denoted by their angular moment n. Each
mode may give rise to a resonance at a frequency satisfying
the following relation:

ð ffiffiffiffi
�

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p Þ4n ¼ Refð�� 1Þ=ð�þ 1Þg: (4)

Note that this condition of resonance only depends on the
ratio � ¼ �=ð2DÞ.
Figure 2 illustrates this resonant feature by displaying

�ext=D0 as a function of frequency and � ¼ �=2D, for an
overall physical cross section D0 ¼ 20 nm. For this figure
as well as in the following of the study, the metal is
assumed to be silver with a surface plasma frequency
!SP ¼ 3:67 eV and permittivity taken from Johnson and
Christy [15]. As shown by Fig. 2, the absorption spectrum
is strongly dependent on � and shows three distinct
regimes.
(i) Weak coupling regime (� > 0:5, i.e., for a gap larger

than the cylinder diameter).—All the modes resonate at the
vicinity of the surface plasma frequency!SP. The coupling
between the two nanoparticles is weak and the system
exhibits the same absorption spectrum as an individual
cylinder.
(ii) Strong coupling regime (� < 0:5).—When the two

nanoparticles are approached by less than one diameter,
resonances for small n start to arise at a smaller frequency
than !SP. These resonances are redshifted when the gap
decreases and the absorption spectrum displays several
resonances in the visible spectrum in addition to the indi-
vidual LSPs resonance at !SP.

FIG. 2 (color online). Absorption cross section �ext normal-
ized by the physical cross section D0 as a function of � and
frequency for a cylinder pair with D0 ¼ 20 nm. The color bar is
in log scale.
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(iii) Kissing cylinders regime (� ! 0).—The number of
excited modes becomes infinite, leading to a continuous
and broadband absorption spectrum [8].

Note that, in practice, the cylinders can be so close to each
other in the strong coupling regime that they would stick by
van der Waals attraction. To circumvent that problem, they
can be embedded into a dielectric matrix. Our analytic
model is still valid in this case except that the term
ð�� 1Þ=ð�þ 1Þ should be replaced by ð�� �dÞ=ð�þ �dÞ
in Eq. (3) (with �d the permittivity of the dielectric matrix).

Figure 3(a) shows the effect of radiative damping on the
extinction spectrum for different sizes of dimers at a fixed
ratio � ¼ 0:01. The theoretical predictions [Eq. (2)] are
compared to the results of numerical simulations per-
formed with the software COMSOL. An excellent agreement
is found in the quasistatic limit (D0 ¼ 20 nm). For larger
structure dimensions, the numerical results are slightly
redshifted compared to our theoretical predictions. This
is due to the retardation effects which are not considered by
our approach [14]. However, the magnitude and line shape
of resonances are nicely predicted for structure dimension
up to 200 nm. Figure 3(a) shows that radiative damping
broadens the linewidth of each resonance and leads to the
saturation of the extinction cross section at the level of the
physical cross section.

An expression of the scattering cross section �s can also
be derived following the strategy of Ref. [14]:

�s ¼ 32�2k3o�
2ð1þ �Þ2D4j�j2

j1� i2��ð1þ �ÞD2k2o�j2
: (5)

The radiative spectrum depends on j�j2 [Eq. (3)]. Hence,
the resonances defined by Eq. (4) also occur in the scatter-
ing spectrum [Eq. (4)]. This is confirmed by Fig. 3(b)
which displays�s=D0 as a function of frequency for differ-
ent sizes of dimers at a fixed ratio � ¼ 0:01. There is a
perfect agreement between our theoretical prediction and
the numerical result in the quasistatic limit (D0 ¼ 20 nm).
The resonances displayed by Fig. 3(b) clearly display an
asymmetric line shape. We stress the fact that these are not
Fano resonances which appear usually in the extinction
spectrum and correspond to the coupling between bright
and dark modes. The sharp dips observed in Fig. 3(b)
originate from the destructive interference between each
successive bright mode. Typically, the sharp dip observed
at ! ¼ 0:85!SP results from the destructive interference
between the modes n ¼ 1 and n ¼ 2 which resonate on
each side of the dip. This feature can be promising in the
perspective of sensing applications, since the ratio between
the absorption and scattering cross sections can reach, for
instance, a value of 150 in the conditions considered in
Fig. 3(b). At these invisibility frequencies, the nanowire
dimer can harvest light efficiently from the far field and
focus its energy at the nanoscale, without any scattering
toward the surrounding area. The dimer acts then as an
invisible or noninvasive sensor.
As for the extinction cross section, radiation damping

leads to a renormalization of the scattering cross section for
large structure dimensions [see the denominator in Eq. (5)]
which makes �s saturate at the level of the physical cross
section [see Fig. 3(b)]. A satisfying agreement is found
between numerical and analytical results in Fig. 3(b), ex-
cept for the slight redshift explained by retardation effects.
The Q factor of the invisibility dips decreases for large
structure dimensions, and the nanowire dimer may keep its
invisible feature only for dimension inferior to 100 nm.
The electric field E0ðx0; y0Þ induced by the dimer can be

deduced from the electrostatic potential solved in the
original frame [Fig. 1(a)]. It can be decomposed as an

infinite sum of modes �ðnÞ: E0 ¼ P1
n¼1 �

ðnÞ. Their ex-
pression along the y0 direction outside of the nanowire
dimer is the following:

c ðnÞ
y0 ¼2inE0

0�ð1þ�ÞD2

�
�þ1

��1
ð ffiffiffiffi

�
p þ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ�
p Þ4n�1

��1

�f½un�1þu�n�1�=z02�½ðu�Þn�1þðu�Þ�n�1�=z0�2g;

with u ¼ 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ �Þp

D=z0.
Figure 4 shows the result of our analytical calculation of

the two first modes taken at their resonant frequencies
[Eq. (4)]. The gap � is fixed to D=50 (� ¼ 0:01). As
pointed out previously, each nanowire supports LSPs
which couple to each other in the narrow gap, leading
to an important field enhancement at this location. The

FIG. 3 (color online). Extinction cross section �ext (a) and
scattering cross section �s (b), normalized by the physical cross
section D0, plotted as a function of frequency for nanowire
dimers of different sizes with � ¼ 0:01. The theoretical predic-
tions (continuous lines) are compared to the results of numerical
simulations (dots).
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angular momentum n associated with each mode corre-
sponds to the number of spatial periods covered by the
LSPs when they propagate around each nanowire.

Figure 5 shows a more systematic investigation of the
nanofocusing properties of a dimer. The field enhance-
ment, jE0j=E0

0, observed along the surface of the nanowires

is shown as a function of the angle � (defined in the inset of
Fig. 5) and frequency for different values of �. Note that
the results displayed by Fig. 5 are valid in the quasistatic
limit: the field enhancement should be renormalized by a
factor j1� 2i��ð1þ �ÞD2k2o�j when radiation damping
is no longer negligible (D0 > 20 nm). Note also that, for a
gap inferior to 0.5 nm between the nanowires, quantum
mechanical and nonlocal effects have to be taken into
account and may also reduce the field enhancement rela-
tive to classical predictions [16].

The resonances of the first LSP modes are clearly visible
in Fig. 5. Each resonance leads to a drastic field enhance-

ment that can be superior to 103 for � < 0:01. Figure 5 also
shows that the field spreads spatially over a large part of the
cylinder surface (j�j< 50�), contrary to kissing cylinders
for which the energy is extremely confined at the vicinity
of the touching point [8]. Unlike the scattering spectrum
which shows invisibility dips [Fig. 3(b)], a strong field
enhancement (> 102) is still obtained out of resonance:
the interference between LSP modes is destructive in the
far- field but not in the near field. This invisible feature may
be of fundamental interest for applications in biology and
nano-optics.
To conclude, note that the conformal transformation

approach can be extended to a wide range of nanostruc-
tures (crescents, 3D dimers, nanoshells, etc.). More than
simply elegant, this strategy is powerful since it provides
novel physical insights (e.g., the invisibility dips) and a
fully analytical solution to describe the physics of LSPs in
complex nanostructures. Unlike a numerical approach, an
efficient and rapid optimization of the nanostructures can
be performed as a function of the application considered.
Further improvements in our analytic model would be to
include quantum mechanical and nonlocal effects [16]. An
atomistic approach might also be necessary to go beyond
the continuum approximation for subnanometer interpar-
ticle distance.
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FIG. 4 (color online). Imaginary part of c ð1Þ
y0 (left) and

c ð2Þ
y0 (right) normalized by the incoming field E0

0 at their resonant

frequencies [Eq. (4)] for � ¼ 0:01. The color scale is restricted
to ½�10 10�, but note that the field magnitude can be by far
larger in the gap.

FIG. 5 (color online). Field enhancement jE0j=E0
0 arising at the

surface of the cylinders, plotted as a function of the angle � and
frequency, for different gaps between the two nanoparticles. The
color bars are in log scale.
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