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A counterpart of the Mollow triplet (luminescence line shape of a two-level system under coherent

excitation) is obtained for the case of incoherent excitation in a cavity. The system acquires coherence

through the strong-coupling between the cavity and the emitter. Analytical expressions, in excellent

agreement with numerical results, pinpoint analogies and differences between the conventional resonance

fluorescence spectrum and its cavity QED analogue under incoherent excitation. Most notably, the

satellites broaden and split sublinearly with increasing incoherent pumping.
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Mollow [1] discovered a striking type of spectral shape
in the resonance fluorescence problem, where an atom is
irradiated by a strong laser beam. The celebrated Mollow
triplet, that results from transitions between atomic states
that are dressed by the coherent light field, has since been a
testbed of nonlinear optics. It stands as one of the funda-
mental spectral shapes of light-matter interaction, maybe
second only to the Rabi doublet. Although the Mollow
triplet is rooted in quantum physics and bears much quan-
tum features itself, it arises from a fully classical light field.
Its Hamiltonian, in the rotating frame of the laser and at
resonance, simply reads HL ¼ �Lð�þ �yÞ, with �2

L the
laser intensity and � the only quantum operator, namely,
the two-level system annihilation operator. Including the
spontaneous decay of the emitter, in the Lindblad form
L�ð�Þ ¼ ð2���y � �y��� ��y�Þ, leads to a master
equation @t� ¼ i½�;HL� þ ��

2 L�ð�Þ from which one

obtains the famous Mollow triplet line shape:
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It is composed of an elastic scattering peak, the Dirac �
function, and the triplet itself, with a central Lorentzian
peak of full width at half maximum (FWHM) �� and

two satellite peaks at�<ðRLÞ with Mollow splitting RL ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�LÞ2 � ð��=4Þ2
p

and FWHMs 3��=2. This structure
was observed a long time ago with atoms [2] and more
recently also in a variety of solid state systems [3–7], with,
as befits the above description, coherent excitation.

In this text we consider a close counterpart of this fun-
damental system, where the light field is initially fully
quantized, and becomes continuous as a result of an
incoherent and continuous pumping that feeds the system
with a very large number of photons. This situation is

realized—as for quantization of the light field—in cavity
QED, where quanta of a trapped standing wave (the pho-
tons) interact with an isolated emitter, and—as for the in-
coherent pumping—with semiconductor microcavities [8],
where excitations are continuously poured into the system
with no external coherence fed in by a driving field. The role
of the emitter is, in this case, played by a quantumdot placed
in the antinode of the microcavity field. In the cavity QED
version of the resonance fluorescence physics, the system is
described by the Jaynes-Cummings Hamiltonian (still at
resonance),H ¼ gðay�þ a�yÞ, with the cavitymode also
quantized through the boson operator a. Cavity and emitter
decay �a=� and incoherent pumping P� are described like

before with a master equation:

@t�¼ i½�;H�þ�a

2
Lað�Þþ��

2
L�ð�ÞþP�

2
L�yð�Þ; (2)

where � is now the density matrix for the combined two-
level-emitter and cavity system. A transition from the Rabi
doublet to a single lasing line was recently observed in the
cavity emission when increasing pumping [9]. Since this
has been claimed while remaining in strong-coupling, it
results from climbing the Jaynes-Cummings ladder [10],
and as such, is a successful realization of quantum nonline-
arities in these systems. The importance of this break-
through for microcavity-QED is however hindered by
such a simple manifestation, particularly since other
mechanisms can also result in a similar behavior of Rabi
splitting collapse without entering the quantum nonlinear
regime [11]. Herewe propose another approach to evidence
quantum features of the coupled quantum dot-microcavity
system, by direct observation of the dot emission. This
configuration is more difficult technically, especially in
the star systems of photonic crystals, where side emission
is mainly that of the cavity. Systems such as micropillars or
microdisks might be more suited for observing the dot
emission, by collecting photons from leaky modes, which
can be done bymeasuring the light emitted in a perpendicu-
lar direction to that from the cavity axis. In general,
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quantum features are better observed when probing the
quantum emitter, rather than the cavity, whose close con-
nections with the classical oscillator tend to surface rapidly
and dominate strongly. Theoretical description is straight-
forward in the low excitation regime even when solving the
system exactly [10], but it becomes computationally de-
manding when the lasing regime is approached. In this text,
we consider the highly nonlinear regime of microcavity
QED, that is, Jaynes-Cummings physics under a strong
incoherent pumping. We find that, in good systems by the
standard of today, a new type of Mollow triplet is obtained
in the direct quantum dot emission spectrum. It is a close
counterpart of the classical Mollow triplet where light is
described by a classical field [1], whereas it is here de-
scribed as numerous quanta of the cavity mode. The coher-
ence is acquired through the strong-coupling with the dot,
resulting in striking variations from the case where it is
provided by an external laser. We now describe them
analytically.

Mollow regime.—Whereas only one parameter (inten-
sity) fully describes the light in Mollow’s description,
the Jaynes-Cummings picture requires from the start to
take into account an infinite number of correlators between
the fields, that we can however relate to each other
[10]: haynan�1�i ¼ i �a

2g haynani and hayn�1an�1�y�i ¼
½P�hayn�1an�1i � �ahaynani�=½�� þ �aðn� 1Þ� where
we introduced �� ¼ �� þ P�. From this follows a first
relation for the populations of the modes, n� ¼ h�y�i and
na ¼ hayai, namely n� ¼ ðP� � �anaÞ=��. This also al-
lows us to obtain a self-contained equation for haynani:

haynani ¼
nP�

��þðn�1Þ�a
hayn�1an�1i � 2�a

��þn�a
haynþ1anþ1i

1þ ��þð2n�1Þ�a

��
� 2P�

��þn�a
þ n�a

��þðn�1Þ�a

;

(3)

where �� ¼ 4g2=�a is the Purcell rate of transfer of popu-
lation from the dot to the cavity mode. This recurrence
equation allows us to compute haynani for all n as a
function of na only. The solution for n ¼ 0 gives a good
approximation for the region where the cavity field be-
haves classically:

na � ��
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:

(4)

The quality of this approximation is seen in Fig. 1 where it
is compared with the exact solution, computed numerically

[10]. The second order coherence function gð2Þ also admits
a closedform expression (not given here but plotted in
Fig. 1) which is unity in good approximation. The expres-
sions Eqs. (4) for the populations have a clear physical
meaning: at low pump, but still high enough to be beyond
the quantum regime [10], i.e., ��, �a < P� � ��, the

cavity population increases linearly with pumping, with a
half occupied dot. This is the most effective region for
accumulation of photons in the cavity (the so-called one-
atom laser [12]), with little disruption from incoherent
processes. Although less efficiently, the dot occupation
also increases linearly with pumping, eventually quench-
ing the linear increase of the cavity population. These
expressions are thus valid until the dot population is fully
inverted, at Pmax � ��, then the self-quenching dominates
the dynamics, emptying the cavity that goes to a thermal
state. The maximum population of the cavity, maxðnaÞ �
g2=ð2�2

aÞ, is reached at the intermediate rate P� � ��=2.
This identifies the regime of interest for the observation
of the Mollow triplet, where the cavity field is intense
(na � 1) and coherent (with a Poissonian photon distribu-

tion, T½n� ¼ e�nanna=n! and gð2Þ ¼ 1):

��; �a � g < P� < ��: (5)

Now that we have a good and analytical description of
the populations, we turn to the optical emission spectrum,
that we show can be obtained in equally good approxi-
mations. The dot emission reads n��Sincð!Þ �
<R1

0 h�yð0Þ�ð�Þiei!�d�. We compute the two-time corre-

lator h�yð0Þ�ð�Þi in two steps: first, we solve the master
equation in the steady state, finding the density matrix
elements �m;i;n;j (for m, n 2 N and i, j 2 f0; 1g, photon
and exciton indexes, respectively). For the range of pa-
rameters of interest, we show that they can be analytically
expressed in terms of the photon distribution T½n� only.
Second, we apply the quantum regression formula.
1. Steady state density matrix.—We consider only ele-

ments that are nonzero in the steady state: the populations
pi½n� ¼ �n;i;n;i with i ¼ 0, 1, corresponding to the proba-

bility to have n photons with (p1) or without (p0) exciton,
and the off-diagonal terms qi½n� ¼ =ð�n;0;n�1;1Þ, corre-

sponding to the coherence between the states jn; 0i and
jn� 1; 1i. The master equation now reads
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FIG. 1 (color online). Exact numerical solution (points)
and their analytical approximation, Eqs. (4) (lines), for na
(blue, circles), n� (brown, squares) and gð2Þ (pink, triangles),
for �a ¼ 0:1g and �� ¼ 0, as a function of pumping P�=g.
Analytical solutions become unphysical when P� ¼ �� (here at
40g), where na ¼ 0, n� ¼ 1 and gð2Þ diverges. They are very
good approximations in the region of interest, Eq. (5).
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@tp0½nþ 1� ¼Dphotfp0½nþ 1�gþ��T½nþ 1�
���p0½nþ 1�� 2g

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
qi½nþ 1�; (6a)

@tp1½n� ¼Dphotfp1½n�gþP�T½n����p1½n�
þ 2g

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
qi½nþ 1�; (6b)

@tqi½nþ 1� ¼Dphotfqi½nþ 1�g���

2
qi½nþ 1�

þg
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ðp0½nþ 1��p1½n�Þ; (6c)

where we have separated the photonic dynamics into a
superoperator Dphot. Given that it is much slower than

the dot dynamics, one can solve the steady state ignoring
Dphot [13]. The photon distribution, T½n� ¼ p0½n� þ
p1½n�, remains unperturbed during the excitation and in-
teraction with the dot and Eqs. (6) then admit exact solu-
tions in terms of T½n�.

2. Two-time correlator and spectra.—The two-time
correlator can be expressed as a sum h�yð0Þ�ð�Þi ¼P1

n¼0 Q½n�ð�Þ, where Q½n� and other functions S0;1½n�
and V½n� are defined through the quantum regression for-
mula by coupled differential equations (n � 0):

@�Q½n� ¼ DphotfQ½n�g � ��

2
Q½n�

þ igð ffiffiffi
n

p
S1½n� �

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
S0½nþ 1�Þ; (7a)

@�S0½nþ 1� ¼ DphotfS0½nþ 1�g þ ��X½nþ 1�
� ��S0½nþ 1� þ igð ffiffiffi

n
p

V½nþ 1�
� ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

Q½n�Þ; (7b)

@�S1½n� ¼ DphotfS1½n�g þ P�X½n� � ��S1½n�
� igð ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

V½nþ 1� � ffiffiffi
n

p
Q½n�Þ; (7c)

@�V½nþ 1� ¼ DphotfV½nþ 1�g � ��

2
V½nþ 1�

þ igð ffiffiffi
n

p
S0½nþ 1� � ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

S1½n�Þ: (7d)

They are, like for the single-time dynamics, separated into
a slow photonic dynamics embedded in a superoperator
Dphot that is � independent in good approximation, and a

fast exciton and coupling dynamics that we can solve
analytically. Moreover, we have introduced the steady
state function X½n� � S0½n�ð0Þ þ S1½n�ð0Þ, in analogy
with T½n�. The initial conditions in Eq. (7) are the steady
state values S0½nþ 1�ð0Þ ¼ iqi½nþ 1�, S1½n�ð0Þ ¼ 0,
Q½n�ð0Þ ¼ p1½n� and V½nþ 1�ð0Þ ¼ 0 (therefore, X½n� ¼
iqi½n�). After some long, but straightforward algebra, we
can find the expression for Q½n�ð�Þ in terms of p0;1½n� and
qi½n�, which, in turn, are expressed in terms of the statistics
T½n�. This allows us to compute a closed-form solution for
h�yð0Þ�ð�Þi, which is however lengthy and not worth
writing here. It shows that each term in the sum over n
accounts for the four transitions between adjacent rungs
nþ 1 and n [10]. The linear regime (n ¼ 0) consists of
only the two transitions of the Rabi doublet. Other rungs
give rise to a generalization of the Rabi frequency in the
nonlinear regime: the nth-rung inner and outer Rabi fre-

quencies, RO;I½n� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ð ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p � ffiffiffi

n
p Þ2 � ð��=4Þ2

q
. In

the Mollow triplet regime (P� > g), all the peaks posi-
tioned at the inner frequencies collapse at the center (in-
cluding the Rabi doublet) giving rise to a single central

peak. Outer peaks remain split at frequencies �RO½n� �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4g2n� ð��=4Þ2
p

.
The spectrum just obtained can be further simplified for

the range of parameters in Eq. (5), to give a compact
analytical expression. First, one considers only the coef-
ficients with leading terms in n, making use of nþ 1 � n.
Then, due to the Poissonian statistics, only rungs with n
close to na contribute significantly allowing the substitu-
tion n ! na in Q½n�. The sum over n simplifies thanks
to the normalization of the distribution function:P

nT½n� ¼ 1. Finally, we neglect terms related to �a before
those related to much larger rates, P� and ��, i.e., we write
the spectrum for these three rates only, through the sub-
stitution g2 ¼ ���a=4, and set �a ! 0. This results in the
expression for Sincð!Þ in terms of P�, �� and �� only, with

C� ¼
�

2P�

��þ��
� ��

��

�
:

Sincð!Þ ¼ C��ð!Þ þ
1
2�

��

2

ð��

2 Þ2 þ!2
þ ðP� � ��Þð3�3

� � ðP� � 5��Þ���� þ 2���
2
�Þ � ð�2

� � ð3P� � ��Þ��Þ!2

�ð�� þ ��Þð9�2
�!

2 þ ½2!2 � ��ðP� � ��Þ�2Þ
: (8)

This is our main result. The structure of the line shape is the
same as that of its coherent counterpart, Eq. (1): a Dirac �
function from the elastically scattered laser light super-
imposed to a triplet. The central Lorentzian peak has the
same weight 1=2 but with FWHM given by the decoher-
ence rate ��. The two satellite peaks sit at �<ðROÞ with
Mollow splitting

RO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP� � ��Þ��=2� ð3��=4Þ2

q
(9)

and FWHM 3��=2. The excellent agreement of our for-
mula with exact numerical results [10,14] is shown in
Fig. 2(a), where we superimpose in dashed blue the
numerical computation to, in solid red, the analytical
expression Eq. (8). Note the elastic peak in the numerics
as a very narrow central line.
Despite a similar structure, the line shapes of Eqs. (1)

and (8) are intrinsically different. This can be appreciated
on physical grounds, when the laser intensity for the
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conventional Mollow triplet is taken the same as the aver-
age population of the cavity under incoherent excitation
(i.e., �2

L ! g2na), and when the broadening of the dot
includes P� (i.e., �� ! ��). In this way, we attempt the
description of the incoherent system with the theory of
the coherent one. We obtain an expression that shows the
fundamental discrepancies between the two types of
triplets:

S0cohð!Þ ¼ �2
�

��ðP� � ��Þ�ð!Þ þ
1
2�

��

2

ð��

2 Þ2 þ!2

� 1

�

��ð3�2
� � 2��ðP� � ��Þ þ!2Þ

9�2
�!

2 þ ½2!2 � ��ðP� � ��Þ�2
: (10)

Comparing this expression with Eq. (8), the central peak
is the same in both cases, as well as the position and
broadening of the satellite peaks (third terms have the
same denominator), so the underlying structures bear
some similarities. However, the satellite line shapes differ,
being affected by the effect of incoherent pumping and
factors such as the dot population, which under coherent
excitation shows opposite behavior to that of Eq. (4):
n0�;coh � 1

2 ½1� �2
�=ð��ðP� � ��ÞÞ�. The shapes of these

peaks are shown in Fig. 2(b), where they are plotted (in
dashed) together with the whole triplets, in the coherent
(thin black) and the incoherent (thick red) cases.

Finally, Fig. 3 shows the natural experimental configu-
ration to demonstrate the new character of nonlinear spec-
troscopy in microcavities under incoherent pumping, and
to contrast it with its coherent counterpart. Increasing
pumping, one sees that in the coherent case (upper panel),
the triplet is better resolved, with a larger splitting, while in
the incoherent case (lower panel), the satellites overlap
with the central line as a result from pumping that splits
them sublinearly, Eq. (9), and also increases their broad-
ening. The two phenomenologies, despite their deep inter-
connections and common features, are strikingly different
and the evidence of the new one should pose no problem
even on qualitative grounds. Observation of the Mollow
triplet under incoherent pumping would inaugurate a new

era bringing together quantum coherence and nonlineari-
ties in microcavities, shedding light on coherence buildup,
lasing and strong coupling.
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FIG. 3 (color online). Evolution of the Mollow triplet when
increasing (from bottom to top) (a) coherent (�L=�� from 1 to
5.5 by steps of 0.5) and (b) incoherent (P�=g from 2 to 11 by
steps of 1, for �a ¼ 0:1g and �� ! 0) excitation.

FIG. 2 (color online). (a) Comparison between analytical ex-
pression Eq. (8), without the elastic peak, (solid red) and the
exact numerical solution (dashed blue). (b) Difference between
the incoherent (thick solid, red line) and the coherent (thin solid,
black line) Mollow triplets, in equivalent conditions. The satel-
lite peaks, that cause the departure, are plotted in dashed.
Parameters: P� ¼ 6:3g, �a ¼ 0:1g and �� ! 0.
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