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We measured ratios of van der Waals potential coefficients (C3) for different atoms (Li, Na, K, and Rb)

interacting with the same surface by studying atom diffraction from a nanograting. These measurements

are a sensitive test of atomic structure calculations because C3 ratios are strongly influenced by core

electrons and only weakly influenced by the permittivity and geometry of the surface. Our measurement

uncertainty of 2% in the ratio CK
3 =C

Na
3 is close to the uncertainty of the best theoretical predictions, and

some of these predictions are inconsistent with our measurement.

DOI: 10.1103/PhysRevLett.105.233202 PACS numbers: 34.35.+a, 03.75.Be, 34.20.Cf

Calculations of atomic polarizability (�) and
van der Waals (vdW) potential coefficients (C6 and C3)
are in demand for predicting pressure-induced and black-
body shifts for atomic clocks, scattering lengths in Bose-
Einstein condensates, and binding energies for molecules
[1–4]. Related calculations are also needed to interpret
atomic parity violation as a test of the standard model
[5,6]. However, calculating these quantities is challenging
because including core electrons, as opposed to consider-
ing only the valence electrons, requires modeling many-
body interactions in a quantum system with relativistic
corrections. Fortunately, these quantities (�, C3, and C6)
are interrelated and can each be expressed in terms of
dipole matrix elements. Therefore, measurements of any
one of these quantities, even for a few atomic species, can
help test the calculation methods that are used to predict all
of these quantities for several different species.

Both dc polarizability (�0) and van der Waals atom-
atom potential coefficients (C6) have been used previously
as benchmarks for atomic theory calculations [6,7]. Until
now, however, it has been difficult to use vdWatom-surface
potential coefficients (C3) as a benchmark because of shifts
and uncertainties in C3 due to unknown properties of the
surface [8]. We have overcome this problem by studying
ratios of C3 for different atoms.

In this Letter, we show that ratios of interaction strengths
for Li, Na, K, and Rb atoms interacting with a surface
depend very weakly on the permittivity and geometry of
the surface, provided that the atoms interact with the same
surface. This allows us, for the first time, to use measure-
ments of atom-surface interactions to distinguish between
atomic structure models. The ratios of C3 reported here
constitute the first experimental detection of the contribu-
tion of core electrons to C3.

Indeed, measurements of C3 can serve as an excellent
benchmark for atomic structure calculations because core
electrons contribute more to C3 coefficients than to C6 or
�0 [9]. In Rb, for example, 3% of �0 is due to core
electrons and calculations of �0 have an uncertainty of
0.1%. By comparison, in vdW interactions between Rb and

an ideal surface, 35% of C3 is due to core electrons and
calculations of C3 have an uncertainty of 1%–2% [7,10].
We will first briefly describe our experiment and explain

how ratios of C3 are measured. Next we will explain why
surface composition has a very small effect on C3 ratios.
Finally we compare calculations from several different
atomic structure models to our measurements.
Our experimental setup is described in detail elsewhere

[11,12]. In brief, we studied diffraction of supersonic
beams of Li, Na, K, or Rb atoms incident on a 100-nm
period silicon nitride (SiNx) nanograting. vdW interactions
between the atoms and the grating bars affect the relative
intensities of the far-field diffraction orders. We adjust the
velocity of the atom beam by changing between carrier
gas mixtures in order to study the intensities of far-field
diffraction orders as a function of velocity (see Fig. 1).
Earlier experiments using nanogratings reported

absolute measurements of C3 [11–14]. However, because

FIG. 1 (color online). Measurements of the relative diffraction
intensity of the 2nd and 3rd diffraction orders (I2=I3) for Na and
K. Ratios of the potential strengths can be obtained from these
data by finding two velocities v and v0 such that ðI2=I3ÞNa ¼
ðI2=I3ÞK. The arrows indicate two such velocities v ¼ 1390 m=s
and v0 ¼ 2100 m=s. We find CK

3 =C
Na
3 ¼ v0=v ¼ 1:51. We ob-

tained a more precise ratio by fitting the data [19].
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different experiments used different samples, ratios of
these previous experiments do not provide the same preci-
sion as the directly measured ratios presented here. For
high precision ratio measurements it is essential to study
the exact same surface sample since both geometry and
composition may vary from sample to sample. To achieve
this, we take care to illuminate the same 100 grating bars
with each of our different 10-�m wide atomic beams.

We first show how the ratios of C3 can be obtained from
our experimental data without needing to know the geome-
try of the grating (period, open fraction, and bar shape)
or the shape of the potential [15]. For a real surface that
has significant roughness or a layer of contamination,
the van der Waals potential may differ from the ideal
form V ¼ �C3r

�3, where r is the distance to the surface
[16]. Furthermore, for a surface of finite extent, such as our
nanogratings, the potential near the edges of the grating
bars is a function of multiple spatial coordinates. We there-
fore consider a more general form for the potential,

VvdW ¼ �C3fðx; zÞ; (1)

where x is parallel to the grating k vector and z is the
direction of atom propagation. Since the grating bars are
relatively uniform in the y direction, we assume that V is
independent of y. Although we still assume that the poten-
tial is proportional to C3, the only restriction we put on
fðx; zÞ is that it be the same for all atoms. This is true by
construction in the pairwise interaction (PWI) approxima-
tion [8,17], so we only require that deviations from the
PWI approximation are proportional toC3 and the same for
all atoms. For the simple geometry of our gratings, this is a
reasonable approximation [12].

As in previous work, we model the grating as a thin
phase and amplitude mask [11–13]. The incident atom
beam is approximately a plane wave, so the wave function
just beyond the grating is given by c ðx; zÞ ¼ aðxÞ�
exp½ikzzþ i�vdWðxÞ�, where aðxÞ accounts for absorption
by the nanostructure and �vdW is a phase induced by the
atom-surface potential. Propagation in the free space be-
yond the grating results in a set of equally spaced diffrac-
tion orders in the far field. If both aðxÞ and �vdWðxÞ are
periodic with period d, then the intensity of the nth order
(relative to the incident intensity) is given by

In¼
�
�
�
�
�
�
�
�

1

d

Z d=2

�d=2
aðxÞexp½i�vdWðxÞþ i2�nx=d�dx
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�
�
�
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2

: (2)

Note that the only atom-specific quantities are contained in
�vdW. In the Raman-Nath approximation �vdW is given by

�vdWðxÞ ¼ C3

@v

Z zf

z0

fðx; zÞdz; (3)

where v is the velocity of the atoms and z0 and zf are

positions before and after the grating, respectively.
Since the only quantity that changes between different

experiments on the same grating is C3=v, any experiment

using the same grating and the same C3=v will produce
the same diffraction intensities. For two species with C3

and C0
3, respectively, this implies

InðvÞ ¼ I0nðv0Þ with v0 ¼ vC0
3=C3: (4)

We can therefore determine the ratio of potential strengths
directly by finding two velocities v and v0 that yield the
same diffraction intensities for two different atomic spe-
cies (as indicated in Fig. 1).
Rather than studying simply the diffraction intensities

In, we focus on the relative intensity I2=I3. Studying
relative intensities reduces systematic errors associated
with detector nonlinearity, the beam profile used to fit the
diffraction data, and fluctuations in the incident beam
intensity. We choose the 2nd and 3rd orders because they
are more sensitive to C3 than the 0th and 1st orders and
more easily detectable than higher orders. Figure 1 shows
I2=I3 as a function of velocity for K and Na. The measured
ratios for Li, Na, K, and Rb are given in Table I.
The assumptions of Eq. (1) are considerably more gen-

eral than in previous work with nanogratings. It is therefore
worthwhile to verify experimentally that our measure-
ments are independent of geometry. We repeated our mea-
surements using gratings with different grating bar widths
as well as gratings that were rotated by several degrees.
This yielded different diffraction intensities, but the re-
ported ratios of C3 remained unchanged. The reproducibil-
ity of our experiment is consistent with the uncertainties
obtained from fitting the data in Fig. 1. For more details
regarding the uncertainties reported in Table I, see [19].
We now show why the surface composition only has a

small effect on the ratios of C3. The vdW coefficient is
given in the nonretarded regime by

C3 ¼ @

4�

Z 1

0
�ði!Þgði!Þd!; (5)

where �ði!Þ is the atomic polarizability. The function
gði!Þ describes the surface response and is given by
gði!Þ ¼ ½�ði!Þ � 1�=½�ði!Þ þ 1�, where �ði!Þ is the
electric permittivity of the surface.
In order to explore the effect of the surface, it is in-

structive to consider the simplified model proposed by
Vidali and Cole that uses single-oscillator expressions for
both the atom and the surface [20]. The integral in Eq. (5)
can then be solved exactly:

TABLE I. Measured ratios of C3 compared to theory. The
theoretical values are obtained using many-body calculations
for �ði!Þ and a Tauc-Lorentz model for a SiNx surface [16,18].

Ratio Theoretical prediction This measurement

CLi
3 =C

Na
3 0.896 0:89� 0:04

CK
3 =C

Na
3 1.51 1:544� 0:025

CRb
3 =CK

3 1.13 1:12� 0:04

CRb
3 =CNa

3 1.69 1:72� 0:07
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C3 ¼ @�0g0
!0!s

8ð!0 þ!sÞ ; (6)

where !s is the surface-plasmon frequency and !0 is the
frequency of the Lorentz oscillator used to model the atom.
For alkali atoms near a SiNx surface, !0 � !s, and we
may make the approximation

C3 � @�0g0!0=8: (7)

In the case of a perfect conductor (!s ! 1), Eq. (7)
becomes exact.

For a material with finite conductivity, the first-order
correction to Eq. (7) is of order !0=!s. The corresponding
correction to the ratioC3=C

0
3 for two atoms with!0 and!

0
0

is of order �=!s, where � ¼ !0 �!0
0. For Na and K in our

experiments, @� � 0:3 eV and for a SiNx surface @!s �
13 eV, so the effect of the surface on the ratio CK

3 =C
Na
3

should be less than 2%. We verify this below with more
realistic descriptions of gði!Þ and �ði!Þ.

Because of Eq. (7), it is enlightening to plot the relative
potential strengths Ci

3=C
Na
3 versus the quantity

ð�0!0Þi=ð�0!0ÞNa, with i 2 fLi;K;Rbg (see Fig. 2). We
plot the ratios relative to Na because our atom beam works
best with Na, which thus gives the most accurate reference.
It is evident from Fig. 2 that Eq. (7), i.e., the case of a
single-oscillator atom near a perfectly conducting surface,
is not an adequate description of the current experiment.
Instead, our measurements are consistent with a model that
includes atomic core electrons.

To emphasize the utility of ratio measurements we
investigate five different models for the surface and two
different models for the atom. We considered the Tauc-
Lorentz model [21] with three different parametrizations to
describe a SiNx surface [18,22,23]. For comparison, we
also considered a Drude model for a gold surface as well as
a perfect conductor. For the atom we compare two different

models: a single-oscillator model and the model provided
by Derevianko et al. that includes core electrons [7,16].
We list the results in Table II.
The range in C3 due to different models of SiNx illus-

trates the problems we have overcome by studying ratios.
Including core electrons in the description of the atom
increases the predictions for CNa

3 by about 6% and for CK
3

by 12%. Since different models for the SiNx surface cause
shifts of about 6% for both atoms, it has been hard to use
direct measurements of C3 for one atomic species to dis-
tinguish between different models for the atom.
The main point of this Letter is that the ratio CK

3 =C
Na
3

varies by only 1% between the different SiNx models while
the different atomic models still yield shifts of 6%. This
means we have found a remarkable situation in which
ratios are not only easier to measure, but are more useful
to study because predictions of ratios are relatively insen-
sitive to the type of surface used.
Theoretical predictions of C3 in the literature are typi-

cally given for the case of an atom interacting with a
perfect conductor. Table II shows that, although our ratios
do not vary much between the different realistic surface
models, a theory that includes core electrons and assumes
an ideal surface still overestimates the ratio CK

3 =C
Na
3 for a

real surface by about 2%. This is because heavier atoms
have additional core electron excitations at higher frequen-
cies. Note that this correction to the ratio is 50 times
smaller than the corresponding correction for absolute
measurements.
Table III shows a summary of recent theoretical predic-

tions of the ratio CK
3 =C

Na
3 found in the literature; all these

theories assume an ideal surface. Therefore, we expect the
predictions in Table III need to be decreased by about 2%
before we can compare them to our experiment that used a
real surface.
After this adjustment, our measurement CK

3 =C
Na
3 ¼

1:544� 0:025 is inconsistent with the effective core

FIG. 2 (color online). Experimentally determined ratios of
potential strength relative to Na (C3=C

Na
3 ). The solid line with

slope of 1 and intercept of 0 is the prediction for a single-
oscillator atom near a perfect conductor [Eq. (7)]. The figure also
shows results from a many-body calculation for the atom [16]
and Tauc-Lorentz model for the surface [18].

TABLE II. Theoretical predictions of C3 for Na and K in
eV �A3 and their ratios resulting from different models for the
surface and the atoms.

Surface model Atom model CNa
3 CK

3 CK
3 =C

Na
3

SiNx [22] Single-oscillator 3.34 4.70 1.407

SiNx [18] Single-oscillator 3.17 4.50 1.420a

SiNx [23] Single-oscillator 3.31 4.67 1.409

Gold [24] Single-oscillator 4.76 6.92 1.455

Perfect conductor Single-oscillator 6.25 8.61 1.375a

SiNx [22] Many-body [16] 3.48 5.27 1.514

SiNx [18] Many-body [16] 3.28 4.95 1.510a

SiNx [23] Many-body [16] 3.44 5.20 1.512

Gold [24] Many-body [16] 4.84 7.31 1.510

Perfect conductor Many-body [16] 7.54 11.6 1.548

aThese values are also shown in Fig. 2.
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potential model of Ref. [25] and third-order many-body
perturbation theory [26]. Our experiment is in best agree-
ment with values based on the direct integration of�ði!Þ in
Refs. [7,16] and the semiempirical approach in Ref. [27].

In summary, by measuring diffraction intensities of a
supersonic atom beam from a material transmission grating
we were able to make precision measurements of ratios of
C3 for Li, Na, K, and Rb interacting with the same surface.
We showed that these ratios are insensitive to the material
composition of the grating. Since the ratios of C3 no longer
depend on the specific nature of some exotic surface such
as SiNx, this measurement is suitable as a benchmark for
atomic physics calculations. We report the ratio CK

3 =C
Na
3

with 2% precision, which is sufficient to distinguish be-
tween some theoretical predictions.

It is possible to extend our method to a range of atomic
and molecular species because our method does not rely
on species-specific equipment such as resonant lasers [14].
There are several systems for which our method can
provide a benchmark that would advance the current state
of the art. The ratio CSr

3 =C
Na
3 , for example, varies by 4%

between different theoretical predictions [16,27].
Uncertainties in C3 for Yb and metastable Sr are estimated
to be significantly larger [1,28,29]. vdW potentials are also
a significant source of uncertainty in computing binding
energies of molecules to surfaces [30]. All these systems
are therefore attractive candidates for future ratio
measurements.
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TABLE III. Summary of theoretical predictions of the ratio
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Na
3 found in the literature, assuming a perfectly conducting

surface. To compare these values to our measurement,
CK
3 =C

Na
3 ¼ 1:544� 0:025 for a real surface, the theoretical

values must be reduced by about 2%. MBPT stands for many-
body perturbation theory and SD refers to the single-double
method.
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3 =C

Na
3

Effective core potential [25] 1.37
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Semiempirical [27] 1.56
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