
Thermal Neutron Captures on d and 3He

L. Girlanda,1,2 A. Kievsky,2 L. E. Marcucci,1,2 S. Pastore,3 R. Schiavilla,3,4 and M. Viviani2

1Department of Physics, University of Pisa, 56127 Pisa, Italy
2INFN-Pisa, 56127 Pisa, Italy

3Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA
4Jefferson Lab, Newport News, Virginia 23606, USA

(Received 2 August 2010; published 30 November 2010)

We report on a study of the nd and n3He radiative captures at thermal neutron energies, using wave

functions obtained from either chiral or conventional two- and three-nucleon realistic potentials with the

hyperspherical-harmonicsmethod, and electromagnetic currents derived in chiral effective field theory up to

one loop. The predictednd andn3He cross sections are in good agreement with data, but exhibit a significant

dependence on the input Hamiltonian. A comparison is also made between these and new results for the nd

and n3He cross sections obtained in the conventional framework for both potentials and currents.
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The nd and n3He radiative capture reactions at thermal
neutron energy are very interesting, in that the magnetic
dipole (M1) transitions connecting the continuum states to
the hydrogen and helium bound states are inhibited at the
one-body level. Hence,most of the calculated cross sections
(80%–90% in the case of n3He) results from contributions
of many-body components in the electromagnetic current
operator [1]. Thus these processes provide a crucial testing
ground for models describing these many-body operators
and, indirectly, the nuclear potentials from which the
ground- and scattering-state wave functions are derived.

Over the past two decades, chiral effective field theory
(�EFT), originally proposed by Weinberg in a series of
papers in the early 1990s [2], has blossomed into a very
active field of research. The chiral symmetry exhibited by
quantum chromodynamics (QCD) severely restricts the
form of the interactions of pions among themselves and
with other particles. In particular, the pion couples to
baryons, such as nucleons and � isobars, by powers of
its momentum Q, and the Lagrangian describing these
interactions can be expanded in powers of Q=��, where

�� � 1 GeV specifies the chiral-symmetry breaking scale.

As a result, classes of Lagrangians emerge, each charac-
terized by a given power of Q=�� and each involving a

certain number of unknown coefficients, so-called low-
energy constants (LEC’s), which are then determined by
fits to experimental data (see, for example, the review
papers [3,4], and references therein). Thus, �EFT pro-
vides, on the one hand, a direct connection between QCD
and its symmetries, in particular, chiral symmetry, and the
strong and electroweak interactions in nuclei, and, on the
other hand, a practical calculational scheme susceptible, in
principle, of systematic improvement. In this sense, it can
be justifiably argued to have put low-energy few-nucleon
physics on a more fundamental basis.

Concurrent with these conceptual developments have
been the acquisition and refinement of accurate methods

for solving the A ¼ 3 and 4 Schrödinger equation (see
Ref. [5] for a review). In this respect, it is worthwhile
noting that the A ¼ 4 scattering problem has proven to
be especially challenging for two reasons. The first is its
coupled-channel nature: even at vanishing energies for the
incident neutron, the elastic n-3He and charge-exchange
p-3H channels are both open, and need to be accounted for.
The second reason lies in the peculiarities of the 4He
spectrum, in particular, the presence of resonant states
between the p-3H and n-3He thresholds, which make it
hard to obtain numerically converged solutions. Indeed, it
is only very recently that both these capabilities have been
fully realized [6,7]. In the present work, the 3- and 4-body
problems are solved with the hyperspherical-harmonics
(HH) technique (see Ref. [8] for a review).
The developments outlined above make it possible to

examine the question of whether available experimental
data on these delicate processes—the nd and n3He cap-
tures—are well reproduced by theory. The present Letter
reports on such an effort by presenting results obtained
both in �EFT as well as in the conventional framework
based (essentially) on a meson-exchange model of poten-
tials and electromagnetic current operators. This approach,
while more phenomenological than �EFT, has a broader
range of applicability, and accounts satisfactorily for a
wide variety of nuclear properties and reactions up to
energies, in some cases, beyond the pion production
threshold, see Ref. [5] for a review. In particular, it repro-
duces well observed magnetic properties of A ¼ 2 and 3
nuclei, including moments and form factors, as well as the
np radiative capture, see Marcucci et al. [1].
The model for the nuclear electromagnetic current in

�EFT up to one loop was derived originally by Park et al.
[9], using covariant perturbation theory. In the last couple
of years, two independent derivations, based on time-
ordered perturbation theory (TOPT), have appeared in
the literature, one by Kölling et al. [10] and the other by
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some of the present authors [11]. There are technical
differences in the implementation of TOPT, which relate
to the treatment of reducible diagrams and are documented
in considerable detail in the above papers. However, the
resulting expressions in Refs. [10,11] for the two-pion-
exchange currents (the only ones considered by the authors
of Ref. [10]) are in agreement with each other, but differ
from those of Ref. [9], in particular, in the isospin structure
of the M1 operator associated with the one-loop correc-
tions—see Pastore et al. [11] for a comparison and analysis
of these differences.

Explicit expressions for the �EFT currents up to one
loop, and associated M1 operators, are listed in Refs. [11].
Here we summarize succinctly their main features. The
leading-order (LO) term results from the coupling of the
external photon field to the individual nucleons, and is
counted as eQ�2 (e is the electric charge). The next-to
leading-order (NLO) term (of order eQ�1) involves seagull
and in-flight contributions associated with one-pion ex-
change, and the next-next-to leading-order (NNLO) term
(of order eQ0) represents the ðQ=mNÞ2 relativistic correc-
tion to the LO one-body current (mN denotes the nucleon
mass).

At next-next-next-to-leading order (NNNLO) (eQ) we
distinguish three classes of terms [11]: (i) two-pion ex-
change currents at one loop, illustrated by diagrams (a)–(i)
in Fig. 1, (ii) a tree-level one-pion exchange current in-
volving the standard �NN vertex on one nucleon, and a
��NN vertex of order eQ2 on the other nucleon, illustrated
by diagram (j), and (iii) currents generated by minimal
substitution in the four-nucleon contact interactions in-
volving two gradients of the nucleons’ fields as well as
by nonminimal couplings, collectively represented by dia-
gram (k). A fourth class consisting of ðQ=mNÞ2 relativistic
corrections (RC’s) to the NLO currents is neglected.
However, RC’s are not consistently treated in available
chiral potentials, such as those employed below. For ex-
ample, the RC’s in the two-nucleon potential, implied by
Poincaré covariance and just derived in Ref. [12] in an EFT
context, have been omitted so far in A ¼ 3 and 4 calcu-
lations, even though their contribution is expected to be
comparable to that of the three-nucleon potential [12].

The loop corrections in panels (a)–(i) involve the pion
mass, the nucleon axial coupling constant gA ¼ 1:29 (from
the Goldberger-Treiman relation relating it to the �NN
coupling constant), and the pion decay amplitude F� ¼
184:8 MeV. The LEC’s entering panel (i) and the minimal
currents in panel (k) have been determined by fits to the np

S- and P-wave phase shifts up to 100 MeV laboratory
energies [11]. We refer below to these constrained terms
collectively as NNNLO(S-L). There are five additional
unknown LEC’s: d08, d

0
9, and d021 in panel ( j), and C0

15

andC0
16 in the nonminimal currents of panel (k). We denote

these terms as NNNLO(LECs) in the following. In a reso-
nance saturation picture, the d08 and d021 (d09) LEC’s can be

related to the combination of coupling constants and
masses entering the isovector (isoscalar) N-� excitation
and !�� (���) transition currents [11]. Indeed, this
connection is exploited in a series of calculations, based
on theM1 operators derived in Ref. [9], of the np, nd, and
n3He radiative captures, and magnetic moments of A ¼ 2
and 3 nuclei [9,13]. Here, however, we adopt a different
strategy, as discussed below. Last, we observe that at
NNNLO there are no three-body currents in the formalism
of Ref. [11], which retains irreducible and recoil-corrected
reducible diagrams.
The �EFT M1 operators have power-law behavior for

large relative momenta k’s, and need to be regularized,
before they can be inserted between nuclear wave func-
tions. Following common practice, we implement this
regularization by means of a cutoff C�ðkÞ ¼
expð�k4=�4Þ, with � in the range (500–700) MeV, and
constrain the LEC’s entering the NNNLOM1 operators of
panels (j) and (k) in Fig. 1 to reproduce a set of observables
for any given � in this range. This same renormalization
procedure is adopted in the currently most advanced analy-
ses of nuclear potentials, for example, in Ref. [14] (see also
Sec. II.C of Ref. [4], and references therein, for further
discussion of this issue).
These operators are used in the present work to study the

magnetic moments of the deuteron and trinucleons, and the
np, nd, and n3He radiative captures at thermal neutron
energies. The calculations are carried out by evaluating
their matrix elements between wave functions obtained
from either conventional or chiral (realistic) potentials
with the variational HH method [8]. We consider the
Argonne v18 [15] (AV18) and chiral NNNLO [14] two-
nucleon potentials in combination with the Urbana-IX [16]
(UIX) and chiral NNLO [17] three-nucleon potentials. The
AV18 and UIX and NNNLO and NNLO Hamiltonians
provide a very good description of three- and four-nucleon
bound and scattering-state properties, including binding
energies, radii, and scattering lengths [7,8].
We now turn our attention to the determination of the

LEC’s d08, d09, d021, C0
15, and C0

16. In principle, the d0i could
be fitted to pion photoproduction data on a single nucleon
or, as mentioned already, related to hadronic coupling
constants by resonance saturation arguments. Both proce-
dures have drawbacks. While the former achieves consis-
tency with the single-nucleon sector, it nevertheless relies
on single-nucleon data involving photon energies much
higher than those relevant to the threshold processes under
consideration and real (in contrast to virtual) pions
(some of these same issues in the context of three-nucleon

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

FIG. 1. Diagrams illustrating two-body currents at NNNLO.
Nucleons, pions, and photons are denoted by solid, dashed, and
wavy lines, respectively. Only one among the possible time
orderings is shown for diagrams (a)–(j).
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potentials have been investigated in Ref. [18]). The second
procedure is questionable because of poor knowledge of
some of the hadronic couplings, such as g!NN and g�NN.

Here, we assume d021=d
0
8 ¼ 1=4 as suggested by

� dominance, and rely on nuclear data to constrain the
remaining four LEC’s. The values obtained by reproducing
the experimental np cross section and magnetic moments
of the deuteron and trinucleons are listed in Table I. Note
that the adimensional values reported there are in units of
powers of �, i.e., we have defined d09 ¼ dS1=�

2, C0
15 ¼

dS2=�
4, d021 ¼ dV1 =�

2, and C0
16 ¼ dV2 =�

4 and the super-

scripts S and V denote the isoscalar and isovector content
of the associated operators.

In Fig. 2 we show results obtained by including cumu-
latively the contributions at LO, NLO, NNLO, and
NNNLO(S-L) for the deuteron (�d) and

3He-3H isoscalar
(�S) magnetic moments (left panels), and for the np
radiative capture cross section (��

np) at thermal energies

and 3He-3H isovector (�V) magnetic moment (right pan-
els). The NLO and NNNLO(S-L) M1 operators are purely
isovector, and hence do not contribute to �d and �S. The
band represents the spread in the calculated values corre-
sponding to the two Hamiltonian models considered here
(AV18-UIX and NNNLO-NNLO). The sensitivity to short-
range mechanisms, encoded in the cutoff C�ðkÞ and in the
rather different short-range behaviors of the adopted po-
tentials, remains quite weak for all these observables. Of
course, taking into account the NNNLO(LECs) contribu-
tion with the LEC values listed in Table I reproduces the
experimental data represented by the black band (to ac-
commodate errors, but these are negligible in the present
case). The contributions at LO and NLO have the same
sign, while those at NNLO and NNNLO(S-L) have each
opposite sign, and tend to increase the difference between
theory and experiment.

Having fully constrained the �EFT M1 operator up to
NNNLO, we are now in a position to present predictions,
shown in Fig. 3, for the nd and n3He radiative capture cross
sections, denoted as ��

nd and �
�

n3He
, and the photon circular

polarization parameter Rc resulting from the capture of
polarized neutrons on deuterons. The experimental data
(black bands) are from Ref. [19] for nd and Ref. [20] for
n3He. Results obtained with the complete NNNLO �EFT
operator are shown by the orange band labeled NNNLO
(LECs): those corresponding to the AV18-UIX (NNNLO-
NNLO) model delimit the upper (lower) end of the band in

the case of nd, and its lower (upper) end in the case of
n3He. Their sensitivity to the cutoff, within a given model,
is negligible for nd and at the 5%–10% level for n3He. The
AV18-UIX and NNNLO-NNLO results are within ’ 2% of
the nd experimental cross section. However, at � ¼
600 MeV, for example, the experimental ��

n3He
is well

reproduced in the NNNLO-NNLO calculation, but under-
predicted by ’ 15% in the AV18-UIX. As expected, these
processes are strongly suppressed at LO: the calculated
��

nd (LO) and�
�

n3He
(LO) are less than half and a factor of 5

smaller than the measured values. In the case of n3He, the
matrix element at NLO is of opposite sign and twice as
large (in magnitude) compared to that at LO, hence
��

n3He
ðLOÞ and ��

n3He
ðLOþ NLOÞ are about the same, as

seen in Fig. 3. For nd, however, the LO and NLO contri-
butions interfere constructively. For both nd and n3He, the
NNLO and NNNLO(S-L) corrections exhibit the same
pattern discussed in connection with Fig. 2. The NNNLO
(LECs) contributions are large, and essential for bringing
theory into good agreement with experiment.
In Fig. 3 we also show results obtained in the conven-

tional framework, referred to as the standard nuclear phys-
ics approach (SNPA), with the AV18-UIX Hamiltonian
model. The electromagnetic current operator includes the
one-body term—the same as the �EFT LO operator dis-
cussed earlier—as well as two- and three-body terms,
constructed from the two- and three-nucleon potentials
(AV18 and UIX, respectively) so as to satisfy exactly

TABLE I. Adimensional values of the LEC’s corresponding to cutoff parameters � in the
range 500–700 MeV obtained for the AV18-UIX (NNNLO-NNLO) Hamiltonian. See text for
explanation.

� dS1 � 102 dS2 dV1 dV2

500 �8:85 (� 0:225) �3:18 (� 2:38) 5.18 (5.82) �11:3 (� 11:4)
600 �2:90 (9.20) �7:10 (� 5:30) 6.55 (6.85) �12:9 (� 23:3)
700 6.64 (20.4) �13:2 (� 9:83) 8.24 (8.27) �1:70 (� 46:2)
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FIG. 2 (color). Results for the deuteron and trinucleon isosca-
lar and isovector magnetic moments, and np radiative capture,
obtained by including cumulatively the LO, NLO, NNLO, and
NNNLO(S-L) contributions. See text for discussion.
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current conservation with them, see Marcucci et al. [1]. In
the figure, the squares labeled SNPA* represent the results
obtained by retaining in addition the relativistic corrections
to the one-body current (i.e., the �EFT NNLO operator).
These corrections had been neglected in all previous stud-
ies of these processes [1]. In fact, their contributions are
found to be numerically significant and, at least for the case
of nd capture, bring the present SNPA* results within ’
4% and 2%, respectively, of the experimental data and
�EFT predictions (based on the AV18-UIX model).
However, it should be emphasized that the SNPA (and
SNPA*) currents contain no free parameters—i.e., they
are not constrained to fit any photonuclear data, in contrast
to the �EFT currents. From this perspective, the achieved
level of agreement between SNPA* and data should be
viewed as satisfactory, especially when considering, in the
�EFT context, the large role played by the NNNLO(LECs)
currents.

We conclude by remarking that the convergence of the
chiral expansion is problematic for these processes. The
LO is unnaturally small, since the associated operator
cannot connect the dominant S states in the hydrogen
and helium bound states (in contrast to np capture, for
example) [1]. This leads to an enhancement of the NLO,
which, however, in the case of n3He is offset by the
destructive (and accidental) interference between it and
the LO contribution. It appears that at NNNNLO no addi-
tional LEC’s enter, Park et al. [13]. Thus, inclusion of
the NNNNLO currents would have to be followed by a

‘‘rescaling’’ of the LEC’s in Table I, in order to reproduce
(as before at NNNLO) the experimental values of �d,
�S;V , and ��

np. The resulting predictions for ��
nd and

��

n3He
would presumably be close to those obtained here

at NNNLO.
It is likely that explicit inclusion of � degrees of free-

dom would significantly improve the convergence pattern,
particularly in view of the relevance of the pion-exchange
current of panel ( j) in Fig. 1—in such a theory, this
operator would be promoted to NNLO [11]. We plan to
pursue vigorously this line of research in the future.
The work of R. S. is supported by the U.S. Department

of Energy, Office of Nuclear Physics under Contract
No. DE-AC05-06OR23177.
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