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For nuclei near a maximum of the neutron strength function, the secular dependence on energy E of

s-wave partial neutron widths differs from the canonical form
ffiffiffiffi
E

p
. We derive the universal form of that

dependence and show that it is expected to significantly influence the analysis of neutron resonance data.
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Purpose.—The Porter-Thomas distribution [1] is one of
the key predictions of random-matrix theory (RMT). The
reduced partial neutron widths (simply ‘‘neutron widths’’
in the sequel) of compound-nucleus (CN) resonances are
predicted to follow a �2 distribution with � ¼ 1 degrees of
freedom. That prediction was recently tested with unpre-
cedented accuracy [2]. The authors scattered slow neutrons
on several Pt isotopes, thereby measuring sequences of CN
resonances over energy intervals of up to 20 keV length,
and obtained sets of widths for s-wave neutrons containing
up to 450 data points. Reduced neutron widths were ob-
tained by rescaling the measured widths by the factor

f2ðEÞ ¼ ffiffiffiffi
E

p
with E taken at resonance energy. That factor

is supposed to take account of the secular variation with
energy of the widths for s-wave neutrons. Using a cutoff
procedure to minimize p-wave background and a
maximum-likelihood analysis, the authors concluded that
the validity of the Porter-Thomas distribution must be
rejected with a statistical significance of at least 99.997
per cent [2]. That result calls into question earlier success-
ful tests of RMT in nuclei (for a review, see Ref. [3]). More
generally, it questions whether at excitation energies of
several MeV nuclei are correctly described as basically
chaotic systems, a view widely held so far. Not surpris-
ingly, the result announced by Koehler et al. has found
wide attention [4].

For the isotopes of Pt investigated in Ref. [2], the
neutron strength function (the ratio of the average neutron
partial width and the mean resonance spacing) is strongly
enhanced. The enhancement facilitates the separation of
s-wave resonances from the contamination of small
p-wave resonances. To the best of our knowledge, the
theoretical implications of that enhancement for the secu-
lar dependence of neutron widths on energy, i.e., for the
function f2ðEÞ introduced above, have never been inves-
tigated. In this Letter we show that the enhancement of the
strength function implies that f2ðEÞ carries an additional

energy dependence on top of the
ffiffiffiffi
E

p
dependence men-

tioned above. That dependence has never been taken into
account in any analysis of data on neutron widths. It is not
clear whether the conclusions drawn in Ref. [2] will be
upheld when that dependence is accounted for.

Maxima of the neutron strength function are due to a
resonance close to threshold (more precisely: to a virtual
state as defined below) or to a weakly bound state of the
nuclear single-particle potential for s-wave neutrons. Such
maxima occur systematically with increasing mass number
(i.e., increasing radius of the nuclear single-particle poten-
tial) when a bound s-wave state is being formed at thresh-
old. (For the Pt isotopes that is the 4s state in spectroscopic
notation.) The enhancement of neutron widths due to the
nascent bound single-particle state is strongest for CN
resonances close to neutron threshold and, being a thresh-
old effect, dies out with increasing separation of the CN
resonances from neutron threshold. Such weakening of the
enhancement causes the additional energy dependence of
f2ðEÞ and forms the topic of the present Letter.
To make the Letter self-contained we begin with a brief

account of single-channel CN scattering theory. We show
that fðEÞ is determined by the projection of the neutron
single-particle scattering wave function onto the nuclear
volume. We calculate that projected part of the wave
function for an attractive square-well potential and deter-
mine fðEÞ for both, a single-particle resonance close to
threshold and a weakly bound state. We show that the
enhancement is a generic feature and occurs likewise in
more realistic nuclear single-particle potentials that differ
from a square well. Whenever the s-wave strength function
shows significant enhancement, f2ðEÞ differs significantly
from

ffiffiffiffi
E

p
even over energy intervals as small as 20 keV (the

interval used in Ref. [2]).
Single-channel CN scattering.—We deal with a single

channel (the s-wave neutron channel). The energy E is
positive and E ¼ 0 denotes the threshold. In the shell-
model approach to nuclear reactions [5], the channel
wave function �E is the antisymmetrized product of the
wave function of the target nucleus in its ground state and
the neutron single-particle scattering wave function�EðrÞ.
The latter depends only on the radial coordinate r and is
chosen real. The numerous many-body resonances typical
for CN scattering are due to N � 1 orthonormal quasi-
bound states j�i where � ¼ 1; 2; . . . ; N. These interact
with each other through the N-dimensional real and
symmetric Hamiltonian matrix h�jHj�i ¼ H�� and are
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coupled to the neutron channel by real Hamiltonian matrix
elements

W�ðEÞ ¼ h�EjHj�i: (1)

The unitary scattering amplitude SðEÞ that takes into ac-
count the presence of the N CN resonances has the form
[5,6]

SðEÞ ¼ exp½2i��
�
1� 2i�

XN
�;�¼1

W�ðEÞD�1
��ðEÞW�ðEÞ

�
:

(2)

Here � is the s-wave potential scattering phase shift, and

D��ðEÞ ¼ E��� �H�� � F��ðEÞ þ i�W�ðEÞW�ðEÞ
(3)

where

F��ðEÞ ¼
Z 1

0
dE0P

1

E� E0 W�ðE0ÞW�ðE0Þ (4)

and where P denotes the principal-value integral. The last
term in Eq. (3) is proportional to the width matrix and
describes the instability of the CN resonances due to their
coupling to the channel. The matrix F��ðEÞ in Eq. (4)

accounts for the shift of the resonances due to that cou-
pling. Equations (2)–(4) provide a very general framework
for s-wave neutron scattering in the presence of CN
resonances. The assumption that the CN resonances are
described by RMT is implemented by postulating that
the matrix H�� is a member of the Gaussian orthogonal

ensemble (GOE) of random matrices.
Near neutron threshold the CN resonances are iso-

lated, and we use the diagonal representation H�� ¼P
�O��E�O�� where O�� is orthogonal and where E�

are the eigenvalues of H��. We define ~W�ðEÞ ¼P
�O��W� and ~F by Eq. (4) with all W’s replaced by

~W’s. For isolated resonances the coupling between the
eigenvalues E� is negligible (both ~F�� and ~W�

~W� are

taken to be diagonal), and SðEÞ takes the form

SðEÞ ¼ exp½2i��
�
1� 2i�

X
�

~W�ðEÞðE� E�Þ�1 ~W�ðEÞ
�
;

(5)

where the complex resonance energies E� are given by

E � ¼ E� þ ~F�� � i� ~W2
�: (6)

The neutron partial width amplitude of the resonance lo-

cated at E� is given by
ffiffiffiffiffiffiffi
2�

p
~W�ðEÞ ¼

ffiffiffiffiffiffiffi
2�

p P
�O��W�ðEÞ.

In order to remove any secular energy dependence from
the matrix elements W�ðEÞ we write

W�ðEÞ ¼ fðEÞV�: (7)

By construction, the amplitudes V� do not carry any

secular dependence on energy E. GOE predicts that in
the limit of infinite matrix dimension, the elements O��

and, therefore, the amplitudes
P

�O��V� are Gaussian-

distributed random variables. As a consequence, the re-
duced neutron widths 2� ~W2

�ðEÞ=f2ðEÞ are predicted to

follow the Porter-Thomas distribution. To test that predic-
tion, we must determine the function fðEÞ for nuclei in the
vicinity of a single-particle s-wave resonance close to
threshold and for a weakly bound single-particle s-wave
state.
Poles of the single-particle scattering amplitude.—

Equation (1) shows that the entire energy dependence of
W�ðEÞ is due to �E. We recall that �E is the antisymme-

trized product of the ground-state wave function of the
target nucleus and the real s-wave scattering wave function
�EðrÞ. For the matrix element W�ðEÞ, only the projection

of�E onto the nuclear volume is relevant. Thus, the energy
dependence of W�ðEÞ is determined by the energy depen-

dence of �EðrÞ for r � R where R is the nuclear radius.
The scale in energy over which the radial dependence of

a single-particle scattering wave function changes, is given
by the typical distance between bound s-wave single-
particle states. In a heavy nucleus, that distance is about
10 MeV and, thus, very large compared to the typical
energy scale over which resonance data are taken. (In
Ref. [2], that scale was 20 keV.) Therefore, the radial
form of the neutron s-wave scattering function in the
nuclear volume r � R can safely be taken as independent
of energy, and we focus attention on the energy-dependent
amplitude fðEÞ of that function. In the vicinity of the
threshold energy (E ¼ 0), fðEÞ is strongly enhanced
whenever a single-particle s-wave resonance or a bound
s-wave single-particle state occurs close to threshold. Both
resonance and bound state manifest themselves as poles of
the unitary single-particle potential scattering amplitude
sðEÞ ¼ exp½2i�� in Eq. (2). To understand qualitatively
what happens we recall some properties of the poles of
sðEÞ. The potential scattering wave function �EðrÞ at
energy E depends asymptotically on wave number k where
@
2k2=ð2mÞ ¼ E, and it is useful to consider the distribution
of poles of the scattering amplitude sðEÞ in the complex
k plane (rather than the complex energy plane). We accord-
ingly replace sðEÞ by sðkÞ.
For a square-well potential, poles of sðkÞ have been

studied in detail [5,7]. Poles of sðkÞ occur either pairwise
or as single poles. Pairs of poles lie below the real k axis
and occur symmetrically to the imaginary k axis. Such
pairs are, thus, located at k0 and at �k�0 with =ðk0Þ �
�1=a (where a is the radius of the square-well potential)
and <ðk0Þ> 0. Single poles lie on the imaginary k axis.
Poles on the positive imaginary k axis correspond to bound
states while poles on the negative imaginary k axis are
referred to as virtual states. We visualize the motion of the
poles in the complex k plane as the depth V0 of the square-
well potential is increased. For a very shallow potential,
there are no bound states and no poles on the imaginary
k axis. All poles lie far below the real k axis, and significant
resonant behavior is absent. As V0 is increased, the first
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pair of poles approaches the negative imaginary axis from
opposite sides. The two poles coalesce at k ¼ �i=a. Then
one pole moves up and the other pole moves down the
imaginary k axis. Significant resonance behavior of sðkÞ is
caused only by the upward-moving pole, first as a virtual
state and later as a weakly bound state. (For a ¼ 6 fm, a
realistic value for the radius of a heavy nucleus, the point
k ¼ �i=a has a distance in energy of about 0.5 MeV from
threshold.) As V0 is increased further, resonance enhance-
ment subsides. The pattern repeats itself as the next pair of
poles approaches the point k ¼ �i=a and the 2s state is
pulled into the potential, and so on.

Enhancement factor for the square-well potential.—We
work out the resulting enhancement of the amplitude fðEÞ
for the 4s state although the analysis and result are exactly
the same for any s state near threshold. The real scattering
function �EðrÞ is normalized to a delta function in energy.
An elementary calculation shows that for r < a we have
�EðrÞ ¼ fðEÞ sinð�rÞ=r where @

2�2=ð2mÞ ¼ Eþ V0 and
where

fðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2�k@2

r
2ðkaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkaÞ2sin2ð�aÞ þ ð�aÞ2cos2ð�aÞp : (8)

As remarked above, the function sinð�rÞ changes very
slowly with energy, and attention is focused on fðEÞ.

To display the resonance enhancement, we focus atten-
tion on energies E of up to several 10 keV and to a weakly
bound state or a virtual state very close to threshold (jE0j �
50 keV or so). A weakly bound 4s state with binding
energy E0 < 0 and associated wave numbers k0 and �0

exists if the condition ½ðk0aÞ=ð�0aÞ� tanð�0aÞ ¼ �1 is
met for ð�0aÞ ¼ ð7�=2Þ þ " and " � 1. Then E0 ¼
�ð7�=2Þ2ð@2"2Þ=ð2ma2Þ. Expanding (�0a), sinð�0aÞ, and
cosð�0aÞ in Taylor series around �a ¼ 7�=2 and keeping
only lowest-order terms, we find

f2ðEÞ � 1

�

�
2m

@
2

�
1=2

ffiffiffiffi
E

p
Eþ jE0j : (9)

The factor
ffiffiffiffi
E

p
is universal for s-wave scattering near

threshold. The factor ðEþ jE0jÞ�1 describes the enhance-
ment due to the weakly bound single-particle s-wave state.
For a virtual state the condition reads ½ðk0aÞ=ð�0aÞ��
tanð�0aÞ ¼ þ1. That yields for f2ðEÞ the same form as
in Eq. (9) except that now E0 is the energy associated with
the virtual state on the negative imaginary k axis.

We have expanded (�a) in powers of (ka) around the
location of the pole of sðkÞ, and we have kept only the term
of zeroth order. The term of next order is ðkaÞ2=ð7�Þ. For
0 � E � 100 keV and a ¼ 6 fm, that term is not larger
than 0.01, and we expect the pole approximation in Eq. (9)
to be excellent for a bound state very close to threshold.
The accuracy of the approximation leading to Eq. (9)
obviously decreases as jE0j increases. We take account
of this fact in our proposal below of how to analyze neutron
resonance data.

Discussion.—Although derived specifically for a square-
well potential, the factor given in Eq. (9) is universal and
describes for r � R the enhancement of the square of the
s-wave single-particle scattering wave function also for
other, more realistic forms of the single-particle potential.
Indeed, the pattern of movement of the poles of sðkÞ in the
complex k plane versus depth of the potential is the same
for all potentials that lack a barrier. Pairs of s-wave poles
occur some distance below the real k axis and symmetri-
cally to the imaginary axis and cannot give rise to signifi-
cant resonance enhancement. Therefore, the value of k
where such pairs coalesce on the negative imaginary
k axis, although different from that of the square-well
potential, amounts to at least several 100 keV. Significant
resonance behavior is again due to the pole of sðkÞ that
moves up on the imaginary k axis from the point of
coalescence, first as a virtual and then as a weakly bound
state. Potential scattering theory [5] shows that at a pole of
sðkÞ,�EðrÞ is singular. For k positive and close to a pole on
the imaginary k axis, f2ðEÞ has the form of Eq. (9).
The universality of our result is displayed by the fact that

f2ðEÞ in Eq. (9) depends only on the energy of the virtual or
weakly bound state and is independent of any detailed
properties of the potential. [The value of E0 in Eq. (9)
does, of course, depend on the potential.] The denominator
in Eq. (9) is obviously a special case of the universal

Lorentzian factor ½ðE� E0Þ2 þ ð1=4Þ�2��1=2 describing
resonance enhancement and applies when the resonance
is located below threshold so that E0 is negative and �
vanishes. We also note that the enhancement factor in
Eq. (9) is similar to that due to a doorway state.
We conclude that for a virtual or a weakly bound neutron

s-wave state, the partial neutron widths carry the universal
enhancement factor given in Eq. (9). The enhancement
factor affects both the neutron strength function and the
secular energy dependence of the widths of neutron s-wave
resonances. To see what happens to the neutron strength
function, we keep E (or k) fixed, positive, and slightly
above threshold, and we increase mass number A, thereby
increasing the radius of the potential. A pair of s-wave
neutron resonances approaches the imaginary k axis, even-
tually giving rise to a virtual and, later, to a bound state.
For the virtual state, the energy jE0j decreases monotoni-
cally toward zero and then, as the virtual state turns into a
bound state, increases monotonically from zero. The result
is first a steady increase of the enhancement factor (9)
and then, after the virtual state becomes a bound state, a
decrease of that factor. Taken together, that causes the
characteristic peak of the strength function with a maxi-
mum at E0 ¼ 0. Conversely, when neutron widths are
measured near threshold for a sequence of s-wave reso-
nances at some fixed value of Awhere the strength function
is enhanced and, therefore, the enhancement factor in
Eq. (9) is operative, the resulting secular energy depen-
dence of the neutron widths goes beyond the standardffiffiffiffi
E

p
dependence.
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Given the universality of the enhancement factor in
Eq. (9), we ask how that factor is expected to affect the
analysis of neutron resonance data. We take the work of
Ref. [2] as an example. We assume that the distance of jE0j
from threshold is large compared to the average resonance
spacing. We recall that the data typically range over an
energy interval of 20 keV. To predict the influence of the
enhancement factor in Eq. (9) on the data, one would have
to determine E0 with an accuracy of about 100 keV. That
requirement precludes a theoretical prediction using the
neutron single-particle potential in heavy nuclei. That po-
tential is not known to such an accuracy. Therefore, we use
another estimate. The mass dependence of single-particle

levels is governed by the factor A�2=3. For a potential depth
of several tens of MeV and A � 200, a weakly bound
single-particle level changes by about 150 keV when A
changes by one unit. Therefore, we expect that for nuclei
near the maximum of the neutron strength function, jE0j is
of the order of 100 keV. That is also consistent with the fact
that for the square-well potential, the point of coalescence
has a distance of about 500 keV from threshold. Taking in
Eq. (9) jE0j ¼ 50 keV (10 keV) as examples, we see that
the resonance enhancement factor [the denominator of
expression (9)] changes by a factor 1.4 (a factor 3, respec-
tively) over an interval of 20 keV starting from threshold.
Thus, the resonance enhancement in Eq. (9) may signifi-
cantly influence the analysis of data on neutron widths.

In such an analysis, a first estimate of E0 can be obtained
from Eq. (9) and the measured enhancement of the strength
function. One may then consider E0 and the average value
of the reduced neutron partial widths as free parameters,
and search for a best fit to a �2 distribution with � degrees
of freedom for the reduced partial widths. Alternatively,
and to take account of the fact that Eq. (9) is valid only
approximately, it is possible to determine the enhancement
factor directly, i.e., without using the pole approximation
of Eq. (9). That can be done by solving numerically the
radial Schrödinger equation for s-wave neutrons for a
potential that is realistic in form and that possesses a virtual
or a bound state close to threshold. The factor fðEÞ is then
determined by the delta-function normalization condition
for the solution of the radial equation. We stress that the
single-particle nuclear potential to be used is not the
optical-model potential (which describes the average neu-
tron scattering amplitude and, thus, incorporates the effect
of the CN resonances) nor is it the real part of the optical-
model potential (because the imaginary part contributes to
the real part via a dispersion relation). Rather, it is the pure
shell-model potential for neutrons. Conclusions about the
failure of RMT can be drawn only if such an approach
yields a value for � that is significantly different from
unity. Conversely, if agreement is obtained for � � 1,
that should make it possible to determine the energy E0

fairly precisely (with an error of perhaps not more than
100 keV) and, from there, the shell-model potential for
neutrons in heavy nuclei with great accuracy.

We mention in passing that the resonance enhancement
in Eq. (9) also affects the shift matrix F��ðEÞ in Eq. (4).

With the same approximations as used above, the level
shift ~F�� in Eq. (6) is given by the product of the reduced

partial width for the resonance at E� and the factorR1
0 dE0Pf2ðE0Þ=ðE� � E0Þ. The enhancement of the shift

due to the pole of f2ðEÞ in Eq. (9) may be considerable and
have important implications for the analysis of spectral
fluctuations.
So far we have considered the case where jE0j is much

larger than the mean spacing of the resonances. That is
probably the typical case. If that condition fails (i.e., if
jE0j � 5 keV or so), it is not justified to consider the
neutron widths as energy-independent constants. Then it
is essential to display the full energy dependence of SðEÞ
explicitly. We use Eqs. (7) and (9) and rewrite the last term
in Eq. (5) as

� 2i�
X
�

ffiffiffiffi
E

p
~V�½ðEþ jE0jÞðE� E� � ~F��Þ

þ i�
ffiffiffiffi
E

p
~V2
���1 ~V�: (10)

Here ~V� ¼ P
�O��V�. Equation (10) is qualitatively dif-

ferent from Eq. (5) with energy-independent widths. The
formulas of R-matrix theory commonly used for the analy-
sis of neutron cross-section data bear a close analogy to the
latter equation [5]. Equation (10) shows that these formulas
cannot be used when E0 is very close to threshold.
In summary, we have shown that a substantial enhance-

ment of the neutron strength function necessarily implies a
significant energy dependence of the neutron partial widths
for resonances in the vicinity of neutron threshold. We
have derived the universal form of that energy dependence.
Conclusions about the validity of RMT predictions can
reliably be drawn only when that dependence is taken
into account in the analysis of neutron resonance data.
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