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We address the problem of testing the dimensionality of classical and quantum systems in a ‘‘black-

box’’ scenario. We develop a general formalism for tackling this problem. This allows us to derive lower

bounds on the classical dimension necessary to reproduce given measurement data. Furthermore, we

generalize the concept of quantum dimension witnesses to arbitrary quantum systems, allowing one to

place a lower bound on the Hilbert space dimension necessary to reproduce certain data. Illustrating these

ideas, we provide simple examples of classical and quantum dimension witnesses.
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In quantum mechanics, experimental observations are
usually described using theoretical models which make
specific assumptions on the physical system under consid-
eration, including the size of the associated Hilbert space.
The Hilbert space dimension is thus intrinsic to the model.
In this work, the converse approach is considered: is it
possible to assess the Hilbert space dimension from
experimental data without an a priori model?

This is particularly relevant in the context of quantum
information science, in which dimensionality enjoys the
status of a resource for information processing. Higher-
dimensional systems may potentially enable the imple-
mentation of more efficient and powerful protocols. It is
therefore desirable to design methods for testing the
Hilbert space dimension of quantum systems which are
‘‘device independent,’’ that is, where no assumption is
made on the devices used to perform the tests.

Recent years have seen the problem of testing the dimen-
sion of a noncharacterized system considered fromdifferent
perspectives. Initially, the concept of a dimension witness
was introduced by Brunner et al. [1] in the context of non-
local correlations. Such witnesses are essentially Bell-type
inequalities, the violation of which imposes a lower bound
on the Hilbert space dimension of the entangled state on
which local measurements have been performed [2–8].
Wehner et al. [3] subsequently showed how the problem
relates to random-access codes, and could thus exploit
previously known bounds. Finally, Wolf and Perez-Garcı́a
[4] addressed the question from a dynamical viewpoint,
showing how bounds on the dimensionality may be
obtained from the evolution of an expectation value.

Though these works represent significant progress, they
all have substantive drawbacks. The approach of Ref. [1]
may not be applied to single-party systems, as it is based on
the nonlocal correlations between distant particles; the
bounds of Ref. [3] are based on Shannon channel capaci-
ties, which are, in general, difficult to compute, while the
approach of Ref. [4] cannot be applied to the static case.

More generally, all these works show how to adapt existing
techniques developed for other scenarios to the problem of
assessing the dimension of a noncharacterized system.
However, (i) no systematic approach to this problem
has yet been developed, and (ii) there are no techniques
specifically designed to tackle this question.
In the present work we bridge this gap and formalize the

problem of testing the Hilbert space dimension of arbitrary
quantum systems in the simplest scenarios in which the
problem is meaningful. We introduce natural tools for
addressing the problem, starting by developing methods
for determining the minimal dimensionality of classical
systems, given certain data. Using geometrical ideas, we
introduce the idea of tight classical dimension witnesses,
leading to a generalization of quantum dimension wit-
nesses to arbitrary systems. As an illustration of our general
formalism, we provide simple examples of such classical
and quantum dimension witnesses.
Scenario.—We consider the scenario depicted in Fig. 1.

An initial ‘‘black box,’’ the state preparator, prepares a
state upon request—we will consider the case of both
classical and quantum states. The box features N buttons
which label the prepared state; when pressing button x, the
box emits the state �x, where x 2 f1; . . . ; Ng. The prepared
state is then sent to a second black box, the measurement
device. This box performs a measurement y 2 f1; . . . ; mg
on the state, delivering the outcome b 2 f1; . . . ; kg.
The experiment is thus described by the probability

FIG. 1. Device-independent test of classical or quantum di-
mensionality. Our scenario features two black boxes: a state
preparator and a measurement device.
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distribution Pðbjx; yÞ, giving the probability of obtaining
the outcome b when the measurement y is performed on
the prepared state �x.

Our goal is to estimate the minimal dimension of the
mediating particle between the devices needed to describe
the observed statistics. That is, what are the minimal
classical and quantum dimensions necessary to reproduce
a given set of probabilities Pðbjx; yÞ?

Formally, a probability distribution Pðbjx; yÞ admits a
d-dimensional quantum representation if it can be written
in the form

Pðbjx; yÞ ¼ trð�xM
y
bÞ; (1)

for some state �x and operators My
b acting on Cd. We also

say that Pðbjx; yÞ has a classical d-dimensional represen-
tation if it can be written as

Pðbjx; yÞ ¼ Pðbj�x; yÞ; (2)

where �x is a classical state of dimension d, i.e., a proba-
bility distribution ~q over classical dits, where qj ¼
Pð�x ¼ jÞ and P

jqj ¼ 1. The outcome b is then a func-

tion of the state �x and the measurement y. This model is
in the spirit of ontological models [5].

Tight classical dimension witnesses.—We first derive a
general method for finding a lower bound on the dimen-
sionality of the classical states�x necessary to reproduce a
given set of data Pðbjx; yÞ. For simplicity, we focus on
measurements with binary outcomes b ¼ �1; the general-
ization to larger alphabets is straightforward. It then
becomes convenient to use expectation values Exy ¼
Pðb ¼ þ1jx; yÞ � Pðb ¼ �1jx; yÞ. Every experiment is
characterized by a vector of correlation functions,

~E ¼ ð ~vx¼1; ~vx¼2; . . . ; ~vx¼NÞ; (3)

where ~vx ¼ ðEx1; Ex2; . . . ; ExmÞ is a vector containing the
correlation functions for a given preparation x and all
measurements. Deterministic experiments—those in which
only one outcome appears for any possible pair of prepara-

tion and measurement—correspond to vectors ~Edet for
which Exy ¼ �1 for all x, y. Clearly, any possible experi-

ment may be written as a convex combination of determi-

nistic vectors ~Edet. Thus, the set of all possible experiments
defines a polytope denoted in what follows by PN;m. The

facets of PN;m are termed positivity facets, of the form

Exy � 1 and Exy � �1, which ensures that probabilities

Pðbjx; yÞ are well defined. Thus PN;m may be viewed as the

set of all valid probability distributions. Note that PN;m

resides in a space of dimension Nm and has 2Nm vertices,

corresponding to the deterministic vectors ~Edet.
Next, we would like to characterize the set of realizable

experiments in the case that the dimension d of the classi-
cal states is limited. We first note that if d � N, all possible
experiments can be realized. Indeed, it is then possible to
encode the choice of preparation x in the classical state�x;
i.e. �x ¼ x. Thus, any probability distribution Pðbjx; yÞ—

i.e. any vector ~E in PN;m—can be obtained, since the

measurement device has full information of both x and y.
Thus, the problem of bounding the dimension of classi-

cal (or quantum) systems necessary to reproduce a given
set of data is meaningful only if d < N. In this case, not all
possible experiments can be realized. We first focus on
deterministic experiments. Clearly, if the classical state
sent by the state preparator is of dimension d < N, then
(at least) dN=de preparations must correspond to the same
state (i.e. the same classical dit). Therefore, only a subset
of the 2Nm deterministic vectors can be obtained in this

case: those deterministic vectors ~Ed
det composed of (at

least) dN=de vectors ~vx which are the same.
General strategies consist of mixtures of these determi-

nistic points. It is, however, possible to identify two differ-
ent scenarios. In the first scenario, the state preparator and
the measurement device share no preestablished correla-
tions and, thus, mix different deterministic preparations
and measurements in an uncorrelated manner. In practice,
this is often a very reasonable assumption. In this case, the
set of experiments is not convex, as not every mixture of

points ~Ed
det is realizable with systems of dimension d [6]. In

the second scenario, the state preparator and the measure-
ment device share classical correlations. This is the natural
situation in a device-independent scenario, where no
assumption about the devices is possible. Now, the set of
realizable points is, by construction, convex and corre-

sponds to the convex hull of deterministic vectors ~Ed
det, a

polytope denoted Pd
N;m. In this work, we focus on the

second scenario since (i) its characterization is simpler,
as a polytope is defined by a finite set of linear inequalities,
and (ii) it is more general, as any experiment in the first
scenario is contained in Pd

N;m.

The polytope Pd
N;m is a strict subset of PN;m. Thus it

features additional facets which are not positivity facets.
These new facets are ‘‘tight classical dimension witnesses’’
(for systems of dimension d), and are formally given by
linear combinations of the expectation values Exy; i.e.

~W � ~E ¼ X

x;y

wxyExy � Cd; (4)

where the probabilities (entering Exy) are of the form of

Eq. (2), with �x being a classical state of dimension d.
These inequalities are classical dimension witnesses in the
sense that (i) for any experiment involving classical states

of dimension d, the associated correlation vector ~E will
satisfy inequality (4), and (ii) in order to violate inequality
(4), classical systems of dimension strictly larger than d are
required. Note that a witness is termed ‘‘tight’’ when it
corresponds to a facet of the polytope Pd

N;m.

To summarize, by characterizing the polytopes Pd
N;m

(that is, by finding all the facets of Pd
N;m) one can lower

bound the dimension of a classical system necessary to
reproduce a given probability distribution Pðbjx; yÞ.
Clearly, if a probability distribution is proven not to belong
to Pd

N;m, it requires classical systems of dimension strictly
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larger than d. In the case that the state preparator and the
measuring device are allowed to share preestablished cor-
relations, our technique also provides an upper bound on
the dimension, since all experiments in Pd

N;m can then be

obtained from classical systems of dimension d. In this
case our methods makes it possible, in principle, to deter-
mine the minimum dimensionality required in order to
reproduce any given probability distribution.

Quantum dimension witnesses.—The above ideas can be
extended to the problem of finding lower bounds on the
Hilbert space dimension of quantum systems necessary to
reproduce a certain probability distribution. We first define
linear quantum d-dimensional witnesses as a linear expres-
sion of the form

~W � ~E ¼ X

x;y

wxyExy � Qd; (5)

where Exy can be written in terms of probabilities of the

form (1) with �x acting on Cd, and there exists a probabil-

ity distribution Pðbjx; yÞ such that ~W � ~E > Qd.
It would be interesting to fully characterize the set of

experiments that can be obtained from quantum states of a
given dimension. Indeed, this would allow one to deter-
mine the minimal Hilbert space dimension necessary to
reproduce any given probability distribution. As above, it is
possible to define different scenarios, depending on
whether the state preparator and the measurement device
share correlations, which can now be quantum. In the case
of no correlations, the set of realizable points is again not
convex [6]. In the case of correlated devices, the set of
quantum experiments is convex. However, obtaining its
complete characterization represents a more difficult prob-
lem, since it is not a polytope. That is, the number of
extreme points is infinite and its boundary cannot be char-
acterized by a finite number of linear dimension witnesses.
All these different scenarios will be discussed elsewhere
[6]. As stated, for the sake of simplicity, our analysis here is
restricted to devices sharing classical correlations.

Case studies.—As an application of our general formal-
ism, we now present several examples of dimension wit-
nesses. In particular, we give a family of linear witnesses
which can be used as both a classical and a quantum
witness for any dimension. In general, the classical
and quantum bounds of our witnesses differ, and thus our
witnesses can distinguish between classical and quantum
resources of given dimensions. We also give an example of
a nonlinear witness for qubits.

1. Simplest case.—We first consider the case d¼2,
i.e., where the classical state is simply a bit. Indeed, we
saw above that our problem is meaningful only if d < N,
and thus we consider the case of three preparations (N ¼ 3)
and two measurements (m ¼ 2) with binary outcomes [7].
We fully characterize the polytope P2

3;2. It features a single

type of nontrivial facet given by

I3 � jE11 þ E12 þ E21 � E22 � E31j � 3: (6)

This inequality is a tight two-dimensional classical witness.
To beviolated, trits are required.Note that trits are sufficient
to reach the algebraic maximum of I3 ¼ 5; indeed any

correlation vector ~E in P3;2 can be obtained using trits.

Figure 2 shows a schematic view of the situation.
The witness I3 is also a two-dimensional quantum

witness. The maximal value of I3 obtainable from qubits
can be computed analytically. Here the analysis may be
restricted to pure states, since I3 is a linear expression of
the probabilities, and to rank-one projective measurements,
since we consider measurements of two outcomes [8]. By
solving the maximization problem, it can be shown that

max�2BðC2ÞI3 ¼ 1þ 2
ffiffiffi
2

p � 3:8284. The first four terms in

Eq. (6) can be seen as the Clauser-Horne-Shimony-Holt
(CHSH) polynomial, whose maximum quantum value is

equal to 2
ffiffiffi
2

p
. This maximization does not involve the third

preparation, which can always be chosen such that E31 ¼
�1. In order to quantum mechanically reproduce a proba-

bility distribution Pðbjx; yÞ leading to I3 > 1þ 2
ffiffiffi
2

p
,

qutrits are required; in fact, classical trits would
suffice. The maximal qubit value can be obtained from
the following preparations and measurements: �x ¼ ð1þ
~rx � ~�Þ=2, My

b ¼ ð1þ b~sy � ~�Þ=2 with ~s1 ¼ ð ~r1 þ ~r2Þ=
ffiffiffi
2

p
,

~s2 ¼ ð~r1 � ~r2Þ=
ffiffiffi
2

p
, ~r3 ¼ ð�~r1 � ~r2Þ=

ffiffiffi
2

p
, and where

~� ¼ f�x; �y; �zg denotes the vector of Pauli matrices.

Thewitness I3 can also distinguish between classical and
quantum resources of a given dimension, here, bits and
qubits. If the inequality (6) (or one of its symmetries) is
violated by a given probability distribution, then it follows
that qubits, rather than classical bits, have been used.
It is interesting to contrast this result with the Holevo bound
[9], which shows that one qubit cannot be used to sendmore
than one bit of information. In our scenario, the state of the
mediating particle somehow encodes the information about
the classical value x. However, here the use of quantum
particles does provide an advantage.
Moreover, we have strong numerical evidence that the

following inequality (based on I3),

FIG. 2 (color online). Schematic representation of the sets of
experiments achievable from classical and quantum states of
given dimensions for case study 1. The set of experiments
attainable from classical bits, forms the polytope P2

3;2 (blue

region). The inequality I3 � 3 (solid line), a facet of this poly-
tope, is a ‘‘tight two-dimensional classical witness.’’ The set of
experiments attainable from two-dimensional quantum states,
i.e., qubits (green and blue regions), is strictly larger. The
inequality J3 � 3�

2 (dashed curve) is a qubit witness; it cannot

be violated by performing measurements on qubits: qutrits are
required. The set of all possible experiments (blue, green, and
red regions) forms the polytope P3;2; any point in it can be

reproduced with a trit or a qutrit.
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J3�jarcsinE11þarcsinE12þarcsinE21�arcsinE22

�arcsinE31j�3�

2
; (7)

is never violated by qubits, suggesting that J3 may be used
as a nonlinear dimension witness. Moreover, the bound is
tight, in the sense that there exist qubit preparations and
measurements that attain it—for instance, the states and

measurements leading to I3 ¼ 1þ 2
ffiffiffi
2

p
given above.

2. Generalization.—Next we generalize the witness I3,
in order to obtain classical and quantum dimension wit-
nesses for any dimension. The form of I3—see Eq. (6)—
suggests the following natural generalization for the case
N ¼ mþ 1:

IN � XN�1

j¼1

E1j þ
XN

i¼2

XNþ1�i

j¼1

�ijEij; (8)

with �ij ¼ 1 if iþ j � N, and �ij ¼ �1 otherwise. For

classical states of dimension d � N, one has that IN �
Ld ¼ NðN�3Þ

2 þ 2d� 1. Indeed, for d ¼ N one obtains the

algebraic bound IN ¼ Ld¼N ¼ NðN þ 1Þ=2� 1. Using the
methods of Ref. [10] we have checked that the inequality
IN � Ld¼N�1 is a tight classical dimension witness (i.e.
a facet of the polytopePd

N;m withm ¼ d ¼ N � 1) forN �
5. We conjecture that it is a tight witness for all values ofN.

Next we show that the inequality IN < Ld¼N is a quan-
tum dimension witness. More precisely, it is impossible to
reach the algebraic bound of IN by performing measure-
ments on quantum states of dimension d ¼ N � 1. Since
IN is a linear expression of expectation values, it is suffi-
cient to consider pure states, and one may write Eij ¼
hc ijOjjc ii, where Oj ¼ Mj

þ1 �Mj
�1 is the measured

quantum observable. Clearly, in order to reach the alge-
braic maximum of IN , we require Eij ¼ sgn½�ij� for iþ
j � N þ 1, and thus the states fjc iig must be eigenstates
of the observables fOjg with eigenvalues fsgn½�ij�g. From
the structure of IN , it can be seen that for any pair of
preparations jc si and jc ti with 1 � s < t � N, the
observable ON�tþ1 must have eigenvalues þ1 for jc si
and�1 for jc ti. Thus all N preparations must be mutually
orthogonal, since any pair of states jc si and jc ti can be
perfectly distinguished by measuring ON�tþ1. A Hilbert
space dimension of (at least) d ¼ N is then required to
reach the algebraic maximum of IN . It therefore follows

that the inequality IN < Ld¼N is a dimension witness for
quantum systems of dimension d ¼ N � 1.
We believe, however, that better bounds can be obtained

for the expression IN . This is the case for N ¼ 3, as shown
above, as well as for N ¼ 4, where we have been able to
compute numerically the bounds for qubits and qutrits.
These results are summarized in Table I. Indeed, it would
be desirable to find tight bounds for the witness IN for
quantum states of any Hilbert space dimension d < N.
Conclusion.—We have addressed the problem of testing

the dimensionality of classical and quantum systems in a
device-independent scenario. We have introduced the con-
cept of tight classical dimension witnesses, which allows
one to put a lower bound on the dimensionality of classical
states necessary to reproduce certain data. This naturally
led us to generalize the concept of quantum dimension
witnesses to arbitrary quantum systems. To illustrate these
ideas, we have provided explicit examples of dimension
witnesses. We have shown that these witnesses (i) are tight
for a small number of classical preparations, (ii) work both
as classical and as quantum dimension witnesses, and
(iii) allow one to distinguish classical and quantum states
of given dimensions. Finally, we have introduced nonlinear
dimension witnesses, and have presented an example of
such a witness for the simplest scenario. Furthermore, we
believe that the simplicity of these techniques provides
sufficient appeal from the experimental viewpoint.
We acknowledge financial support from the European

PERCENT ERC Starting Grant and Q-Essence Project, the
Spanish MEC FIS2007-60182 and Consolider-Ingenio
QOIT Projects, Generalitat de Catalunya and Caixa
Manresa, and the UK EPSRC.

[1] N. Brunner et al., Phys. Rev. Lett. 100, 210503 (2008).
[2] D. Perez-Garcia et al., Commun. Math. Phys. 279, 455
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