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In complementary images of coordinate-space and momentum-space density in a trapped 2D Bose

gas, we observe the emergence of presuperfluid behavior. As phase-space density � increases toward

degenerate values, we observe a gradual divergence of the compressibility � from the value predicted

by a bare-atom model, �ba. �=�ba grows to 1.7 before � reaches the value for which we observe the sudden

emergence of a spike at p ¼ 0 in momentum space. Momentum-space images are acquired

by means of a 2D focusing technique. Our data represent the first observation of non-mean-field physics

in the presuperfluid but degenerate 2D Bose gas.
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Because of the enhanced role of fluctuations in low-
dimensional systems [1], a two-dimensional (2D) Bose
gas at nonzero temperature does not have long-range phase
coherence. In a homogeneous system there can be at best
only a quasicondensate, no true Bose-Einstein condensa-
tion (BEC). Under the combined effect of interactions
and quantum degeneracy, however, there is nonetheless
a phase transition known as Berezinskii-Kosterlitz-
Thouless (BKT) associated with the unbinding of vortex
pairs [2]. Below the critical temperature TBKT, the system
is superfluid.

Experiments in 2D atomic gases [3–6] are usually con-
ducted in the presence of an inhomogeneous trapping po-
tential. In the complete absence of interactions, the
confining potential can resurrect a traditional BEC [7], but
for realistic experimental parameters, interatomic interac-
tions tend to suppress BEC by smoothing out the spatial
profile [3–6,8,9] of the mean density to the point where the
sample can be understood as a collection of locally uniform
spatial regions, each of which is characterized by a particu-
lar local density and thus a particular local value of TBKT.
Although these local regions may be too small to test in
detail the coherence-related predictions of BKT theory,
qualitative effects have been observed in experiment [3,6].

Our particular interest is in the region just to the warm
side of TBKT. In an earlier experiment on bosons trapped
in a 2D optical lattice, we observed a proliferation of
vortices as wewarmed through the discrete-case equivalent
of TBKT [10]. But in that experiment a great many meso-
scopic condensates were present, one at each lattice site,
on both sides of the BKT transition, because they had
condensed at a TBEC distinct from and well above TBKT.
For the continuous case, in contrast, there is no correspond-
ing second transition temperature above TBKT. But if the
cooling gas has by TBKT already become a medium that can
support vortices, whether bound or not, then heuristically
we see that it must have continuously evolved from a fully
fluctuating nondegenerate gas into a sort of presuperfluid

with suppressed density fluctuations [11]. Theory [8,11–
15] validates this intuition, and experiments [5] have in
turn been consistent with predictions of that theory. Up
until now, however, experiments have not been directly
sensitive to the properties of the presuperfluid, T * TBKT

gas. The goal of the present work is to provide a minimal-
assumption, first empirical look at this exotic regime.
We emphasize key features of this approach: 1. Our line
of sight is along the axis of tight confinement: we do not
need to do a deconvolution of our images to get the 2D
density distribution. Steps are taken to minimize system-
atic errors in density measurements. 2. We analyze our
in situ images to extract the local compressibility, a quan-
tity directly sensitive to local microscopic physics. 3.
We use a 2D focusing technique to record high-resolution
2D momentum-space images complementary to the
coordinate-space images. We make corresponding infer-
ences about nonlocal coherence. 4. We use a simple but
robust ‘‘bare-atom’’ model to correct the observed density
for the presence of a small population in excited states
in the tight confinement direction, and to determine a
bare-atom compressibility with which to compare our
observations.
Experimentally, we create a stack of well-isolated quasi-

2D layers by superimposing a one-dimensional, blue-
detuned optical lattice with lattice spacing 3:8 �m onto a
magnetically trapped, evaporatively cooled cloud of Rb-87
atoms. Within each layer, approximately 6:2� 105 atoms
feel a harmonic potential characterized by frequencies
ð!r;!zÞ ¼ 2�ð10; 1400Þ Hz. The characteristic dimen-

sionless 2D interaction strength is ~g ¼ ffiffiffiffiffiffiffi
8�

p ðas=ahoÞ ¼
0:093, where as is the 3D scattering length and aho is the
ẑ harmonic-oscillator length [16]. The atoms are allowed
to equilibrate in their 2D geometry before probing
occurs. Right before probing the resulting coordinate- or
momentum-space distribution, we apply a microwave
pulse together with a transient magnetic field to pump
atoms in the central layer into another hyperfine state,
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resonant with the probe light. The strength of the micro-
wave selection pulse is adjusted to keep the peak optical
density of the imaged fraction within the linear dynamic
range of our imaging.

Our momentum-space imaging makes use of a focusing
technique which is an extension to 2D of a procedure
developed for imaging 1D momentum distributions
[17,18]. It yields a much cleaner separation of momentum
and coordinate-space distributions than is obtained in
earlier experiments [4,6]. After selecting a single layer,
we turn off the optical lattice and let the layer expand into
a purely magnetic trap with frequencies ð!r;!zÞ ¼ 2��
ð5:2; 10:4Þ Hz. Because of the 140:1 aspect ratio of the
cloud, the expansion is initially purely axial, very rapidly
reducing the 3D density while not affecting the in-plane
coordinate- or momentum-space distributions. After this
near-instantaneous suppression of the repulsive atom-atom
interactions, each atom undergoes free harmonic motion in
the x-y plane. After a dwell time t ¼ 1

4
2�
!r
, just as the initial

2D momentum- and coordinate-space distributions have
swapped, we take an absorption image [Fig. 1(a)]. Scaling
the spatial coordinate by m!r yields the momentum-space
distribution that existed just as the probe sequence began.
We take azimuthal averages of the absorption images
before plotting and fitting the data.

For coordinate-space images the procedure is similar,
but after the lattice turn-off, we wait only 1 ms before
taking the absorption image [Fig. 1(b)]. The 2D density
remains essentially frozen while the 3D density—and re-
lated imaging artifacts [5]—are much reduced.

To extract a signal for many-body physics from our data,
we compare our data to a fully fluctuating, bare-atom
model, in essence the Paris group’s mean field, Hartree-
Fock, local-density model [9]. The mean occupation of a
single-atom state k is given by the Bose-Einstein distribu-
tion, Nk ¼ 1

eðEk��Þ=kBT�1
, where Ek is the energy of the state.

For our system, kBT � @!r, but kBT � @!z. We treat the
atomic motion semiclassically in the in-plane direction,
while preserving discrete harmonic-oscillator levels in

the ẑ direction. The 2D coordinate-space density in the
jth axial level is

njð ~rÞ ¼ 1

h2

ZZ
d2 ~p

1

e½"ð ~pÞþ�jð ~rÞ��jð~rÞ�=kBT � 1
; (1)

where the free particle dispersion "ð ~pÞ ¼ p2

2m . The local

chemical potential for the jth level is given by

�jð ~rÞ ¼ �global � 1

2
m!2

rr
2 � j@!z

�X
l�j

2

�
4�@2

m
asfjlnlð ~rÞ

�
; (2)

whereas the intralevel interaction energy is

�jð~rÞ ¼ 2ð4�@2as=mÞfjjnj: (3)

The relevant mean-field interaction energies depend on fjl
which are the normalized density overlap integrals over the
axial dimension between densities associated with axial
quantum states j and l. Interaction energies are comfort-
ably less than the axial spacing @!z, justifying our treating
the axial wave functions as frozen. We define a quantity
u00 � ð4�@2as=mÞf00, such that we can write �0ð ~rÞ ¼
2u00n0 ¼ 2ð@2~g=mÞn0ð ~rÞ. Evaluating the integral in
Eq. (1), we get

njð ~rÞ ¼ � lnð1� e�½�jð~rÞ��jð ~rÞ�=kBTÞ=�2
db (4)

where the de Broglie wavelength �db ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�@2=mkBT

p
.

For any given value of �global and T, nj are determined

self-consistently. For kBT & @!z, the model converges in
just a few iterations.
The bare-atom model is a no-condensate model from

which all the many-body effects associated with degener-
ate bosons has been intentionally omitted: the additional
factor of 2 in front of the parentheses in Eq. (2) and (3)
arises from an implicit assumption that the second-order
correlation function at zero distance is 2, as it would be
for fully fluctuating, nondegenerate ideal bosons, and
not 1, as for a 3D BEC. Furthermore, "ð ~pÞ ¼ p2=2m is
the dispersion relation for independent atoms moving in a
mean-field potential. There are no collective excitations
such as phonons.
All the same, the bare-atom model should do very well

where phase-space density �j � nj�
2
db < 1, true for j > 0

in our system. As for the calculated value of n0ð ~rÞ, this will
begin to fail for �0 * 3:5, but comparison observations
with the naive, bare-atom n0 will allow us to quantify the
telltale discrepancy.
An analysis of a coordinate-space image proceeds

as follows. We measure the integrated density in the
z direction with contributions from all populated excited
axial levels. nmeasð ~rÞ ¼

P
jnjð ~rÞ, but the interesting physics

lies in n0ð~rÞ. We compare the results of the bare-atom
model to observed nmeas and fit the parameters T and
�global to the low phase-space (hence well-understood)

FIG. 1 (color). (a) A trap-focused, momentum-space image.
(b) An in situ, coordinate-space image. The corresponding
azimuthal averages are shown in Figs. 2(g) and 2(c).
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regions of the cloud. With the chemical potential and
temperature obtained from the fit, we can use Eq. (4) to
evaluate the excited state distributions. Then we numeri-
cally find a self-consistent solution to get nk (k > 0), with
the constraint n0 ¼ nmeas �P

k>0nk; see Figs. 2(a)–2(d).
Once the corrected ground-state distribution n0 is ex-

tracted from nmeas, we calculate the scaled (by n2) isother-
mal compressibility � at each imaging pixel

� ¼ dn0=d�0 ¼ ðdn0=drÞðd�0=drÞ�1: (5)

Although �global is not a quantity we can know with great
accuracy in a model-independent way, d�0=dr �
�dð12m!2

rr
2Þ=dr ¼ �m!2

rr is known quite precisely,

as the contributions to �0 arising from the mean field
of axially excited atoms are small and correctable.
dn0=dr is determined from our coordinate-space images.
Equation (5) then gives � at each discrete radius in an
image. We plot the result vs the local phase-space density
�0 ¼ n0�

2
db in Fig. 3. We compare � to the value �ba that

the bare-atom model would predict at the same density.
For an observed value of n0, we numerically solve the
bare-atom prediction n0 ¼ � ln½1� expð�0 � �0ðn0ÞÞ=
kbT�=�2

db for �0, and determine how n0 changes for small

changes in �0, and thus extract �ba (Fig. 3).
As a test of the local-density approximation that is central

to our analysis, we determine � using images from two very
different classes of samples: clouds with T ¼ 171 nK and
central �0 of about 9 [Fig. 3(a)], and clouds with T ¼
128 nK and central �0 of about 30 [Fig. 3(b)]. The shape
of �ð�Þ is the same and, in particular, the value of �0 for
which the extracted value of � becomes distinguishable
from �ba is in both cases about 4.
A note on our preferred method of fixing of �, the

calibration scale factor that relates nmeasð~rÞ to the observed
optical density profile: we considered (i) an error-prone
calculation based on optical absorption cross section and
(ii) a model-dependent (even unto logical circularity) fit-
ting of � in the image analysis but settled finally on
(iii) interleaving our data runs with auxiliary measure-
ments of very low T clouds in which the atoms are
in a near-pure Thomas-Fermi inverted parabola with neg-
ligible noncondensed wings. In this limit, we assume

FIG. 2 (color). (a)–(d) Coordinate-space distributions and (e)–
(h) corresponding momentum distributions. Two distributions in
the same row are taken under near-identical conditions. The thin
black curves give the azimuthal averages of nmeas from the raw
images. The thick blue curves in the coordinate-space distribu-
tions are the ground-state distribution n0 after correcting for
nk>0. The spike in momentum space that first appears in (g) has
no corresponding dramatic change in coordinate space (c). The
vertical dotted line in (c) represents the inverse of the momentum
resolution limit indicated in (g) and is thus a lower limit on the
spatial extent of the coherence of the population of low-p (high-
coherence) atoms represented by the area (about 1.4% of total)
under the spike in (g).

FIG. 3 (color). Scaled compressibility � vs phase-space den-
sity �0. (a) Measured � extracted from images of samples at T ¼
171 nK, as in the image in Fig. 2(c). Black circles are data
averaged over the values calculated from images of three sepa-
rate clouds. The blue curves are �ba calculated from the bare-
atom model. (b) Same but with � extracted from images of
samples at T ¼ 128 nK. The paired vertical dotted lines indicate
the location of the jump in coherence discussed in the text.
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�global ¼ u00n0ð0Þ and thus fix �. This assumption means
that our measured values of �, scaled as in Fig. 3, are
constrained to saturate to an average of 2.0 at very high �0.
In essence, we get accurate measurements of the sample
density and temperature in the exotic, intermediate regime
of �0, by assuming prior good understanding of behavior in
the experimentally well-characterized regimes of low de-
generacy, mean-field at high T and of high-coherence, pure
condensates at low T.

In Fig. 2, we present side-by-side pairs of coordinate-
space and momentum-space distribution taken in a se-
quence such that pairs represent images of clouds with
very similar temperatures and total atom number, such
that the preimaging values of �0ð0Þ are the same between
pairs to within 10%. As T decreases, there is no obvious
sudden change in the coordinate-space distribution n0ð~rÞ,
[Figs. 2(a)–2(d)], while in momentum space [Figs. 2(e)–2(h)
a central spike suddenly emerges at T ¼ 171 nK [Fig. 2(g)].
The inverse width of this central spike is a measure of the
spatial extent of the coherent fraction in the highest-density
region of the cloud. Our momentum-space resolution is
such that the presence of a resolution-limited peak implies
that at least some coherence extends over a central disk of
radius 4:5 �m, or* 10�db. From coordinate-space images
taken under the same conditions for which the coherence
spike first appears in momentum-space, we determine that
it happens when the central value of �0 ¼ 8:0ð0:7Þ (this
critical value �c is determined from looking at many more
pairs of images than are presented in Fig. 2). We emphasize
that from the coordinate-space distribution alone, the iden-
tification of a transition temperature would require model-
dependent analysis of the smoothly varying distribution,
while with access to both distributions at once, we readily
see that a modest change in the central phase-space density
of <15% causes the distribution at p ¼ 0 to jump by a
factor of 3.

What have our observations told us about the 2D Bose
gas as it cools towards the BKT transition? We can say
empirically that as �0 varies from about 7.2 to 8.7, we see a
dramatic increase of coherence in a range>4:5 �m, jump-
ing by a factor of 3. The transition may be even sharper, but
temporal drifts limit resolution. The predicted [14] critical
value is �c ¼ lnð380=~gÞ ¼ 8:3.

Our most interesting observation is that in warmer gases,
for �0 � 4, well before the sudden onset of coherence, we
can already resolve that compressibility is above what a
bare-atom model of degenerate bosons can account for. As
�0 reaches its coherence-jump value, 8.0, �=�ba has al-
ready increased to 1.7 (Fig. 3). It is natural to associate the
increase in �=�ba with the gradual changing of the inter-
action energy from its value in a fully fluctuating gas,
2u00n0, to its fully condensed value, u00n0, and to draw a
corresponding inference about the zero-range second-order
correlation function. For ~g ¼ 0:093 the corresponding
theoretical prediction (from Ref. [14] and Sec. 3.3 of

Ref. [11]) for �=�ba at �c would be 1.59, in reasonable
agreement with our observed 1.7. As a caveat, our obser-
vation of an anomalous �=�ba establishes definitively only
the breakdown of the bare-atom model, which could be
partially due to the violation of the other key bare-atom
assumption, that in-plane excitations correspond to indi-
vidual atoms with kinetic energy �ð ~pÞ ¼ p2=2m. In any
case, our data provide a first definitive observation of non-
mean-field physics in the presuperfluid 2D Bose gas.
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Note added.—Recently, a relevant experimental preprint

appeared [19].
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