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We analyze the ground state properties of a one-dimensional cold atomic system in a lattice, where

Rydberg excitations are created by an external laser drive. In the classical limit, the ground state is

characterized by a complete devil’s staircase for the commensurate solid structures of Rydberg excita-

tions. Using perturbation theory and a mapping onto an effective low-energy Hamiltonian, we find a

transition of these commensurate solids into a floating solid with algebraic correlations. For stronger

quantum fluctuations the floating solid eventually melts within a second quantum phase transition and the

ground state becomes paramagnetic.
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The quantum melting of solids is a paradigm for the
manifestation of quantum fluctuations at zero temperature.
This quantum phase transition is driven by the competition
between the interaction energy giving rise to a crystalline
structure with localized particles and the kinetic energy
preferring a delocalization of the particles. The qualitative
behavior of the transition can be described by the
Lindemann criterion, which states that the solid melts if
the fluctuations around the mean position reach a certain
fraction of the lattice spacing [1]. The zero temperature
melting of solids with purely repulsive interactions has
been studied in detail for Wigner crystals [2], and has
recently attracted large attention for dipolar system real-
ized with polar molecules [3] and Rydberg gases [4–6]. In
this Letter we study the quantum melting of crystalline
phases in driven Rydberg systems.

Rapid experimental progress motivated by coherent
applications like quantum computing [7] and quantum
simulation [8] has pushed the field of Rydberg atoms
from single-particle physics into an area where strong
many-body effects are important [9–14]. Within these
driven strongly interacting systems, crystalline many-
body ground states have recently been proposed [4–6],
where an ordered arrangement of Rydberg excitations
spontaneously appears in a translationally invariant con-
figuration of frozen atoms. The absence of a kinetic term
in the microscopic Hamiltonian describing these systems
requires a deeper analysis to fully understand the nature of
the quantum melting of these crystalline structures. Here,
Rydberg atoms in one-dimensional (1D) lattices [15] are
particularly suitable to investigate the properties of
Rydberg crystallization.

In this Letter, we develop an effective theory allowing to
study the quantummelting of crystalline phases of strongly
interacting and driven Rydberg atoms in 1D lattices and
determine the complete phase diagram. In contrast to the
conventional melting of crystalline solids with the quan-
tum fluctuations driven by the kinetic energy, here, the
quantum fluctuations derive from the competition between

interaction energy and the external laser drive, coupling
the atomic ground state to the excited Rydberg state.
Deriving an effective low-energy description, we find a
two-stage melting: first from a commensurate solid with
true long-range order to a floating solid with quasi long-
range order, and finally to a paramagnetic phase; see Fig. 1.
The latter transition from the floating solid to the para-
magnet is in agreement with predictions from a universal
scaling function [16].
We start with the microscopic Hamiltonian describing

the driven Rydberg system: Rydberg excitations are cre-
ated by two-photon processes via an intermediate atomic
level that can be adiabatically eliminated. Consequently,
the internal structure of the atoms can be treated as a single
hyperfine ground state jgi and a single Rydberg level jei,

FIG. 1 (color online). Ground state phase diagram: We find
commensurate solids with filling f ¼ p=q describing a complete
devil’s staircase for � ¼ 0. The lobes with p > 1 are not visible
within this scale. For increasing Rabi frequency �, a quantum
phase transition takes place into a gapless floating solid (FS)
with algebraic correlations for the solid structure and in general
incommensurate density, and eventually a second melting tran-
sition occurs into a gapped paramagnet (PM). This second
transition line satisfies ���12=13.
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giving rise to a spin 1=2 description. The coupling between
the two states by an external laser field is given by the Rabi
frequency� and the detuning �. The interactions between
the Rydberg states are described by a repulsive van der
Waals interaction with a C6 coefficient. Here, we focus
on a 1D setup, where the atoms are trapped in a lattice

with lattice spacing a. Using the Pauli matrices �ðiÞ
� , the

Hamiltonian in the rotating frame after applying the rotat-
ing wave approximation reads

H ¼ � @�

2

X
i

�ðiÞ
z þ @�

2

X
i

�ðiÞ
x þ C6

a6

X
j<i

PðiÞ
eeP

ðjÞ
ee

ði� jÞ6 (1)

with PðiÞ
ee ¼ ð1þ �ðiÞ

z Þ=2 [17]. Incoherent processes such
as spontaneous emission are much slower than typical
experimental time scales [7] and can be ignored. In addi-
tion, it is important to note that 1D lattices suitable for
Rydberg excitations can be realized using deep optical
lattices [18], optical [10,11] and magnetic [19] microtraps,
or microfabricated arrays of thermal vapor cells [20].
We do not require to have one single atom per lattice
site; instead it is possible to work with collective degrees
of freedom where a single Rydberg excitation is shared
among all atoms of one lattice site. In the following
we focus on the situation with a single atom per lattice
site.

The derivation of the phase diagram from the micro-
scopic Hamiltonian follows in three steps: (i) we start in the
classical regime for � ¼ 0, and derive the devil’s stair-
case structure of the commensurate crystal. (ii) We study
the influence of the driven dynamics with � � 0 within
perturbation theory and derive the effective low-energy
Hamiltonian. (iii) For increasing number of defects,
we study the effective Hamiltonian within mean-field
theory and establish the transition into the paramagnetic
phase.

For � ¼ 0 there are no quantum fluctuations, i.e., the
Hamiltonian is purely classical. The ground state for�> 0
follows a complete devil’s staircase of crystalline configu-
rations with different commensurate lattice spacings
[21,22]. The stability of each crystalline phase with a
rational filling factor f ¼ p=q is determined by the van-
ishing of the single-particle energy gap, i.e., when it is
energetically favorable to insert or remove one Rydberg
excitation. For each f we can calculate the detuning �0 in
the center of the lobe and its width �w, which leads in the
strongly interacting regime with f � 1 to

�0 ¼ 7�ð6ÞC6

a6

�
p

q

�
6
; �w ¼ 42�ð7ÞC6

q7a6
: (2)

Note, that the lobes with p > 1 are extremely small, and
we will restrict the analysis in the following on the stability
of the lobes with p ¼ 1, i.e., f ¼ 1=q.

In the following, xi denotes the position of the ith
Rydberg excitation in the lattice. Then, the commensurate

solid satisfies xiþ1 � xi ¼ q. Within this notation, the
lowest energy excitations are characterized that the
distance between two neighboring Rydberg excitations is
reduced (increased) by a lattice site, i.e., xiþ1 � xi ¼ q�
1; the two types of excitations are denoted as particle (hole)
excitations, respectively. Note, that these elementary ex-
citations describe fractional spin excitations [21], as the
addition (removing) of a Rydberg excitation gives rise to
q ¼ 1=f elementary excitations. Their excitation energies
in the classical regime are Ep;h ¼ f@ð�w=2� ��Þ for

particles and holes, respectively. Here, �� ¼ ���0 is
the deviation of the detuning from the center of the lobe. In
addition, two excitations of equal type have a repulsive
interaction, while two excitations of different type are
attractive.
Next, we focus on the regime with a finite drive � � 0,

where the system acquires a highly nontrivial dynamics.
Within this regime, the melting of the commensurate crys-
tals appears via the nucleation and subsequent condensa-
tion of defects. For a large detuning � � �, the system
has a well-defined energy gap and we can derive an effec-
tive low-energy Hamiltonian for the defects within pertur-
bation theory in �=�. We first restrict our treatment to
three classes of states: (i) the crystalline ground state jci,
(ii) the states jpii with a particlelike defect between the
Rydberg excitation xi and xiþ1, i.e., xiþ1 � xi ¼ q� 1,
and (iii) the analogous states jhii for holelike defects. In
second order perturbation theory, the effective Hamiltonian
contains diagonal terms, shown in Figs. 2(a) and 2(b),
while the particle (hole) defects also acquire an off-
diagonal term corresponding to a hopping of the defect,
see Fig. 2(c). Adding a constant energy such that Ec ¼ 0
the diagonal terms take the form

h�jHeffj�i ¼ E� þX
xi

@
2�2

E� � EðaÞ
i

þ X
j=2fxig

@
2�2

E� � EðbÞ
j

:

Here, EðaÞ
j and EðbÞ

j correspond to the energies of the virtual

levels depicted in Figs. 2(a) and 2(b), which take the form

(a) (b)

(c)

FIG. 2 (color online). Processes in second order perturbation
theory. (a) Virtual annihilation of a Rydberg excitation.
(b) Virtual creation of a Rydberg excitation. (c) Hopping of a
crystal defect.
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Consequently, the diagonal terms provide an additional
shift in the excitation energy for the particles and holes,
which in the limit f � 1 reduces to (� ¼ p, h)

�E� ¼ h�ijHeffj�ii � hcjHeffjci � E� ¼ I�
@�2

�
; (4)

with the dimensionless quantities Ip � �Ih � 0:090. The

off-diagonal defect hopping for holes reduces to

Jh ¼ hhijHeffjhi�1i ¼ @
2�2

Eh � Eðc1Þ
i

þ @
2�2

Eh � Eðc2Þ
i

; (5)

where the first process annihilates a Rydberg excitation at
position xi with the subsequent creation of the Rydberg
excitation at position xi � 1, while the second term re-
verses the order of creation and annihilation. Finally, the
corresponding term Jp for the hopping of particle defects is

obtained similarly, and the evaluation of the second order
processes provides Jp ¼ Kp@�

2=� and Jh ¼ Kh@�
2=�

with Kp � Kh � �7=5. We can now derive the shape of

the lobes for the commensurate solid, see Fig. 1: the
nucleation of particlelike defects destroying the commen-
surate solid takes place at the vanishing of the excitation
gap, i.e., Ep þ �Ep � 2Jp ¼ 0 and determines the upper

boundary of the lobes, while the nucleation of holelike
defects becomes preferable for Eh þ �Eh � 2Jh ¼ 0,
which determines the lower boundary for the lobes.

The new phase is characterized by a finite density of
defects. These defects obey a strong on-site repulsion, and
consequently, close to the phase transition line the density
of defects is very low. This allows us to describe the
qualitative behavior of the quantum phase transition within
an effective spin-1 theory for the defects

Heff ¼ �J
X
i

½Sþi S�iþ1 þ H:c:� þUðSzi Þ2 ��Szi (6)

with the three states jmii describing the presence of a
particle (m ¼ 1) or hole (m ¼ �1) defect at site i. The
XY interaction with J ¼ Jp � Jh includes the hopping of

the defects and the possibility to create particle-hole pairs,
while the uniaxial anisotropy U ¼ f@�w=2 accounts for
the cost in energy to create defects, and the chemical
potential � ¼ @�� describes the variation in detuning.
Note, that this model neglects additional weak particle-
hole symmetry breaking terms, longer range interactions,
higher orders in �=� perturbation theory, and the possi-
bility to nucleate several defects at the same site. However,
these additional terms will only change the quantitative
behavior of the commensurate lobes.

The effective one-dimensional spin-1 model gives natu-
rally rise to a transition from the commensurate solid with
an excitation gap to a phase with algebraic correlations

hSziSzji � hSzi i2 � 1=ji� jj2K and linear excitation

spectrum. Varying the detuning �� results in a
commensurate-incommensurate transition with defects
behaving as free fermions, i.e., K ¼ 1, while the transition
at the tip of the lobe is described by the Kosterlitz-Thouless
universality class with K ¼ 2 [23]. However, the physical
quantity describing the properties of the Rydberg atoms is

given by the spin-spin correlation hPðiÞ
eeP

ðjÞ
ee i rather than the

defect correlations hSziSzji. Consequently, we have to pro-

vide a mapping allowing to calculate the physical quantity
from the effective model. The defect density Szi can be
expressed in terms of the position of the Rydberg atoms as
Szi ¼ xiþ1 � xi � q. Consequently, the total defect number
Nk ¼

P
i�1
j¼0 S

z
j ¼ xk � x0 � kq between the Rydberg exci-

tation at x0 and xk defines the position of the kth Rydberg
excitation. As the system is translational invariant, we can
assume without loss of generality x0 ¼ 0. Then, the corre-
lations between the Rydberg atoms take the form

hPð0Þ
ee P

ðjÞ
ee i ¼ 1

qþ n

X
k

h�j;kqþNk
i ¼ X

k

Pkðj� kqÞ
qþ n

(7)

with n ¼ hnii the defect density in the effective
Hamiltonian. Here, PkðmÞ denotes the probability distribu-
tion ofNk to findm defects. In the regimewhere the system
is described by free fermions, the distribution function can
be determined efficiently numerically at short distances
using Monte Carlo simulations with correlated random
numbers [24]; see Fig. 3. On the other hand, the long
distance behavior can be derived within Luttinger liquid
theory [25], predicting a Gaussian distribution with a
mean value nk and a variance �2 ¼ hðNk � nkÞ2i ¼
K logðk=bÞ=�2; here b� �n denotes a short distance cut-
off. As shown in Fig. 3, this Gaussian distribution even
captures the qualitative behavior on short distances.
Consequently, we find that the Rydberg-Rydberg
correlations oscillate with period nþ q and decay on short

FIG. 3 (color online). Decay of the spin correlations from

Monte-Carlo simulations (crosses) according to c=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnj=b0

p
(solid

line) as predicted by Luttinger liquid theory (q ¼ 6, n ¼ 0:25).
The crossover to the algebraic decay takes place at much larger
distances ji� jj � 109. The inset shows the oscillations of the
correlation function.
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distances as 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log½j=ðnþ qÞ=b�p

, while a transition to an
algebraic decay occurs at large distances, i.e.,

hPð0Þ
ee P

ðjÞ
ee i � hPð0Þ

ee i2
hPð0Þ

ee i2
� cos

�
2�j

nþ q

��ðnþ qÞb
j

�
2K=ðnþqÞ2

with hPð0Þ
ee i ¼ 1=ðnþ qÞ. Therefore, we find that the tran-

sition from the commensurate solid takes place into a novel
phase exhibiting quasi long-range order for the solid cor-
relation function. As the density is in general incommen-
surate with the underlying lattice structure we denote this
novel phase as a floating solid. It is important to note, that
the crossover from the short distance regime to the alge-
braic decay takes place once the different terms in Eq. (7)
start to overlap, i.e., j� exp½ðnþ qÞ2=2�. While this scale
is much larger than the typical experimental scale achiev-

able, the short distance 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logj=b0

p
decay is a unique

characteristic for this phase.
In the regime of large Rabi frequencies with � �

C6=a
6 � �, the spin Hamiltonian (1) reduces to the

Ising model in a transverse and a longitudinal field.
Then, the ground state is described by a gapped paramag-
netic phase with algebraic decay of the correlations as 1=r6

due to the long-range interaction [26]. Consequently, a
second phase transition takes place from the gapless float-
ing solid to the paramagnet.

This second transition can be seen as the breakdown of
an effective theory describing the system in terms of
defects, and takes place when the number of defects ni at
a site i becomes of the order of the spacing between the
Rydberg atoms q. Note, that this criterion is equivalent to
classical Lindemann criterion for the melting of solids [1].
The effective Hamiltonian at the commensurate density
� ¼ 0 describing the qualitative behavior for higher defect
densities includes multiple defects at a site, and also allows
for multiple defect hopping, i.e.,

Heff ¼ U
X
in

n2i � J
X
i

�X
mnp

jnihnþ pji 	 jmþ pihmjiþ1

�

with jnii describing the state with n defects at site i (n < 0
for holes and n > 0 for particles). Using mean-field theory,
we obtain for the fluctuations of the defect number
hn2i i � J2=U2, and comparing this value with the mean
spacing between the Rydberg atoms q2 � J2=U2 provides

the scaling ���12=13 for the transition line from the
floating solid towards the paramagnet. Note, the influence
of the underlying lattice drops out for this second transi-
tion, and the scaling agrees with the value previously
derived using a universal scaling function [16]. The com-
plete phase diagram exhibiting three different phases is
sketched Fig. 1. Note that this phase diagram is also in
good agreement with recent numerical results obtained for
the spin Hamiltonian (1) at high fillings [6].

Experimentally, the commensurate solids are the most
challenging to realize. They can be observed if the critical
Rabi frequency�c at the tip of the lobe is much larger than
the intrinsic decoherence rates, e.g., by radiative decay. For

87Rb atoms with a principle quantum number n ¼ 80 and a
lattice spacing a ¼ 266 nm, we find for the q ¼ 32 phase
�c ¼ 2�
 1:5 MHz. Note that isolated radiative decays
will lead to an overall reduction in Rydberg atom density,
but correlations will be largely unaffected.
Finally, the presence of a floating solid with incommen-

surate fillings between the commensurate solid lobes and
the paramagnetic phase is highly remarkable as the under-
lying lattice structure is not required to stabilize this phase.
Consequently, we expect that this floating solid with quasi
long-range order also survives a different arrangement of
the atoms; especially we expect that this phase is also
present in the ‘‘frozen’’ Rydberg regime [27], where the
atoms are distributed randomly.
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