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We present a molecular dynamics study of reentrant nematic phases using the Gay-Berne-Kihara model

of a liquid crystal in nanoconfinement. At densities above those characteristic of smectic A phases,

reentrant nematic phases form that are characterized by a large value of the nematic order parameter

S ’ 1. Along the nematic director these ‘‘supernematic’’ phases exhibit a remarkably high self-diffusivity,

which exceeds that for ordinary, lower-density nematic phases by an order of magnitude. Enhancement of

self-diffusivity is attributed to a decrease of rotational configurational entropy in confinement. Recent

developments in the pulsed field gradient NMR technique are shown to provide favorable conditions for

an experimental confirmation of our simulations.
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In the context of phase transitions, ‘‘reentrancy’’ refers
to a nonmonotonic variation of an order parameter with the
thermodynamic field driving the transition. Reentrancy is
ubiquitous in the physics of thermal many-particle sys-
tems. It arises under disparate physical conditions, for
example, in quantum gases [1], two-dimensional charged
colloids [2], or relativistic scalar field models [3]. In
soft-matter systems, reentrancy has been reported for
self-assembled supramolecular structures [4,5], wetting
phenomena at oleophilic surfaces [6], and discotic and
calamitic liquid crystals [7]. In fact, since the first obser-
vation of reentrant nematic (RN) phases in a seminal paper
by Cladis [8], reentrancy in liquid crystals (LC) seems to
have received most of the attention. This is most likely
because of the abundance of phases exhibited by these
materials. For example, reentrant phase transitions have
been reported for the isotropic phase of mixtures of dis-
cotic LC [9], the ferroelectric transition in syn- and anti-
clinic smectic C phases [10], the cholesteric-to-blue phase
transition in chiral LC [11], and nematic (N) phases [12].

Despite the variety of systems and thermodynamic con-
ditions under which reentrancy in LC materials arises,
comparatively little attention has been paid to the dynam-
ics of RN phases. For example, distinct differences in
the molecular dynamics in the N and RN phases can be
concluded from corresponding changes in the nuclear
magnetic relaxation times reported in Refs. [13–15].

Whereas most earlier work on reentrancy of phase tran-
sitions in LC is experimental in nature, comparatively little
attention has been paid to this fascinating phenomenon
from a theorist’s point of view [16]. The most recent
theoretical study employs isothermal-isobaric and canoni-
cal ensemble Monte Carlo (MC) simulations to investigate
the nature of the smectic A (smA)-RN phase transition for a

bulk system of hard ellipsoids [17]. Unfortunately, the
model employed in Ref. [17] is somewhat artificial in
assuming that the ellipsoidal molecules are always oriented
perfectly parallel such that all rotational degrees of free-
dom are always ‘‘frozen’’ irrespective of the thermody-
namic conditions. Therefore, this study seems only of
limited use to elucidate properties of RN phases at a
molecular level. Moreover, the authors do not consider
dynamic features of RN phases.
Here, we show that the smA-RN phase transition causes

a dramatic increase in the self-diffusion of the molecules in
the direction of the nematic director n̂. Our model system
consists of soft spherocylinders interacting via the so-
called Gay-Berne-Kihara pair potential [18]; specifically,
we use the original version of the model, GBK(6,5,2,1) in
the notation of Ref. [18]. Data will be presented for a
system of spherocylinders confined to a slit pore with
structureless walls, separated by a distance sz ¼ 19� along
the z axis. The fluid-solid interaction is described by the
surface-averaged potential [19]
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where "fs determines the attractive well depth, �s�
2 ¼

2�1=3 is the areal density of a layer of substrate atoms,
dw is the minimum distance of a spherocylinder from either
substrate, and gðûÞ is the ‘‘anchoring function,’’ where the
unit vector û specifies the orientation of a molecule [20].
Here, gðûÞ ¼ u2x þ u2y favors energetically an orientation

parallel to the substrate plane [21].
We employ both extensive isothermal-isobaric MC

and microcanonical molecular dynamics (MD) simulations
to locate the smA-RN phase transition and to study
changes in mass transport accompanying that transition.
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The main purpose of employing MC calculations is to
provide suitably equilibrated starting configurations for
subsequent MD simulations. In addition, MC calculations
are used to independently verify the correctness of the MD
simulations through a comparison of equilibrium proper-
ties obtained in both types of simulations. In MC simula-
tions we use a standard algorithm [22] but allow the side
lengths of the computational cell to vary independently to
preserve the in-plane isotropy of the pressure tensor even in
highly ordered confined phases; for more details, see
Ref. [23]. We employ the customary dimensionless units

of � for length, "=kB for temperature T, and ð�2m="Þ1=2
for time t, where m ¼ 1 is the spherocylinder mass. Values
for � and " are taken from Ref. [18]. Our simulations
comprise N ¼ 1000 molecules of length L ¼ 6. We trun-
cate interactions beyond a minimum distance dm ¼ 3 and
in MD use an integration time step of �t ¼ 10�4.

To characterize the degree of nematic order, we compute
the nematic order parameter S as the ensemble average of
the largest eigenvalue of the instantaneous alignment ten-
sor [24], and its associated eigenvector corresponds to n̂.
The layering characteristic of smA phases is quantitatively
described through the function [20]

�ðdÞ �
���������
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d
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where d is the spacing between layers and the smectic
order parameter � is defined as the maximum of �ðdÞ in
the interval ½L� �; Lþ ��, where � ¼ 0:05. Focusing on
T ¼ 4:0 first, plots in Fig. 1 show that S is rather small up
to a number density � & 0:09, indicating that the confined
fluid is in its isotropic phase. Beyond � * 0:09, S rises
steeply, assuming values characteristic of nematic phases
(S * 0:4) and levels off as � increases. At the highest
densities considered S ’ 1, which reflects a nearly perfect

orientation of molecules. Over the same range of densities,
� is very small up to values of � ’ 0:115, indicating that
the confined fluid does not form any smectic layers. As the
density increases further, smectic layers are forming re-
vealed by � * 0:5. Interestingly, as the density keeps
increasing beyond � ’ 0:135, � drops to a low value of
about 0.1, whereas S increases further towards its maxi-
mum value of about 1. Hence, � ’ 0:135 demarcates the
formation of a RN phase. The structural characteristics of
confined phases pertaining to the stable regime of N, smA,
and RN phases is illustrated by ‘‘snapshots’’ of configura-
tions generated in MD (see Fig. 2). Notice the presence of
distinct molecular layers in the smA state which disappear
once the RN state forms. By comparing snapshots for
typical N and RN phases, it is apparent from Fig. 2 that
the latter exhibit much more orientational but roughly the
same positional order compared with the former.
The key result of our study concerns the self-diffusion

of molecules in the direction of their orientation. To that
end, we introduce the parallel mean-square displacement
(MSD)

h�r2kð�Þit �
1

N

�XN
i¼1

fûi � ½riðtþ �Þ � riðtÞ�g2
�
t
: (3)

The angular brackets indicate an average over the N mole-
cules and time origins referred to by subscript ‘‘t’’. In
Fig. 3, we present plots of the MSD for typical N, smA,
and RN phases where different time regimes can be iden-
tified. In the double-logarithmic representation, short-time
slopes of the MSDs exceed their long-time counterparts on
account of the initial ballistic motion of molecules in all
three phases. As expected, the MSDs are indistinguishable
for � & 0:1. In the limit of large �, the time dependence of
the MSDs corresponds to diffusive motion; that is, the
MSDs depend linearly on �. The MSD for the smA phase
exhibits a plateau at intermediate times which eventually
gives way to diffusive motion at long times. The plateau
reflects the presence of smectic layers that hinder molecu-
lar motion in the direction perpendicular to the plane of
adjacent smectic layers (see Fig. 2). In the limit � ! 1,
reliable values of Dk can be extracted from the plots in

Fig. 3 via the Einstein relation [25,26]

Dk ¼ lim
�!1

1

2�
h�r2kð�Þit: (4)

0.06 0.08 0.1 0.12 0.14
ρ

0

0.2

0.4

0.6

0.8

1

S,
Λ

FIG. 1 (color online). Plots of S (�, d) and � (h, j) as
functions of number density � for confined LC. Open and filled
symbols refer to T ¼ 4:0 and 6.0, respectively.

FIG. 2 (color online). Configuration snapshots from MD; � ¼
0:110 (left, N), 0.133 (middle, smA), and 0.139 (right, RN), and
T ¼ 4:0. Color code: ûi � n̂ ¼ 0, blue (light gray); ûi � n̂ ¼ 1,
red (dark gray), i ¼ 1; . . . ; N.

PRL 105, 227802 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

26 NOVEMBER 2010

227802-2



A comparison of plots in Figs. 1 and 4 reveals that, in the N
phase,Dk is small but nonzero. It attains a nearly vanishing

value in the smectic phase on account of layer formation
(see Fig. 2), which blocks mass transport efficiently in
the direction of the layer normal [25]. Most importantly,
however, compared with the smA phases, Dk increases

dramatically by several orders of magnitude when the
RN phases become thermodynamically stable (i.e., for � *
0:135; see the inset in Fig. 4). Because of the unusually
largeDk in conjunction with high nematic order (S ’ 1; see
Fig. 1), we call these high-density nematic phases super-
nematic. One also notices by comparing data for different
T in Fig. 4 that both data sets show a similar large increase
ofDk beyond a certain density threshold. However, the plot
for T ¼ 6:0 exhibits nonzero values of Dk over a density

range where the corresponding curve for the lower T ¼ 4:0
drops to zero. This is due to the absence of smA phases at

T ¼ 6:0 (see Fig. 1). Interestingly, the experimentally
determined phase diagram presented by Guillon, Cladis,
and Stamatoff also suggests the absence of intermittent
smA phases and a continuous transition from N to RN
phases under suitable thermodynamic conditions [27].
Nevertheless, the increase in orientational order for � *
0:135 and T ¼ 6:0 causes Dk to increase equally strongly.

Hence, at sufficiently high T one may observe superne-
matic features without reentrancy.
The dramatic increase of Dk in the RN phase can be

attributed to a loss of rotational configurational entropy Src

due to both an increase in density and the presence of solid
surfaces. We rationalize this by assuming a characteristic
time interval �k associated with the onset of diffusive

motion in the direction of n̂ such that Dk / 1=�k. For
� � �k the probability P that a molecule has traveled a

distance �rk from its origin at � ¼ 0 in the direction of n̂
should then also be inversely proportional to �k. Intuitively,
one expects P ð�rkÞ to be larger if the alignment of mole-

cules with n̂ is more pronounced on average, that is, the
larger S is. However, a larger value of S implies a lower
rotational configurational entropy Src such that P /
expð�Src=kBÞ by using standard statistical-physical rea-
soning [28]. This then suggests Dk / expð�Src=kBÞ. We

estimate Src via

S rc ¼ �kB
Z

d�Pð�Þ lnPð�Þ; (5)

where Pð�Þ is the distribution of angles cos�i ¼ ûi � n̂. By
assuming Pð�Þ to be Gaussian with a standard deviation of
�rc, it is easy to verify that Src / ln�rc. A similar relation
was obtained for the configurational entropy of a macro-
molecule in Ref. [29] by assuming a Gaussian distribution
of relevant internal degrees of freedom. Hence, the above
line of arguments suggests Dk / ��1

rc , which is supported

by plots in Fig. 5.
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FIG. 3 (color online). MSDs in the confined N (�, � ¼ 0:110),
smA (h, � ¼ 0:133), and RN phases (�, � ¼ 0:139) at T ¼ 4:0.
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FIG. 4. Dk [see Eq. (4)] as a function of � for the confined LC;
(�) T ¼ 4:0, (d) T ¼ 6:0. The inset is a magnification of the
T ¼ 4:0 isotherm around the smA-RN transition.
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FIG. 5. Dk as a function of ��1
rc for T ¼ 4:0 (�) and T ¼ 6:0

(d). The linear fit (dashed line) is rationalized in the text.
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In summary, we have shown for the first time that super-
nematic LC phases exhibit unusually large self-diffusivity
which can be explained in terms of a substantially reduced
Src. Here the suppression of Src is assisted by confinement
to a nanoscopic slit pore where the solid substrates favor a
planar arrangement of the molecules with respect to the
substrate plane. Because the solid surfaces of the slit pore
may be viewed as the representation of an external field
superimposed onto the intermolecular interactions, we
anticipate the results presented here to be generic in that
they should persist in other fluids composed of anisometric
molecules that are exposed to external fields (e.g., dipolar
fluids in external magnetic fields). Hence, we believe our
results to be important for a broad range of LC applications
ranging from lubricants in nanotribology [30] over nano-
sensors [31] to photonic [32] and organic electronic devices
[33] where the mobility of molecules plays a key role.

Though the available experimental data do not yet pro-
vide a rigorous confirmation of our theoretical predictions,
some of these data are in reasonable qualitative agreement
with our simulations. For example, extrapolating longitu-
dinal relaxation rates reported in Ref. [14] from the RN to
the N phase yields values markedly below those in the N
phase. If referred to the same T, these relaxation rates
correspond to correlation times that are notably shorter in
the RN compared with the N phase. However, this general
interpretation of NMR data remains speculative as long as
translational diffusion has not definitely been identified as
the process governing the observed relaxation.

Direct evidence for the relation between translational
diffusion and NMR data can be provided by the pulsed field
gradient NMR (PFG NMR) technique [34], which records
molecular displacements typically over a micrometer
range. For example, PFG NMR has been applied to directly
assess the diffusion tensor upon entering the N phase [35].
There, diffusion in the direction of themolecules’ long axes
was found to increase with increasing nematic order.
Similarly, the diffusivity of n-alkanes in nanochannels
was found to increase with increasing orientational order
[36]. These findings are in line with our data where en-
hanced molecular ordering is accompanied by increasing
diffusivities in the direction of n̂. The powerful combina-
tion of PFG NMR with magic angle spinning has recently
enabled a notable increase in both observation times and
gradient pulse intensities [37]. As a consequence, PFG
NMR diffusion measurements became possible beyond
the limits of measurability existing so far. This concerns,
in particular, the first diffusion measurements with LC
confined to nanopores [38]. To stimulate a direct experi-
mental verification of our present predictions using these
novel techniques is the primary purpose of this study.
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