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We show how dissipative dynamics can give rise to pairing for two-component fermions on a lattice. In

particular, we construct a parent Liouvillian operator so that a BCS-type state of a given symmetry, e.g., a

d-wave state, is reached for arbitrary initial states in the absence of conservative forces. The system-bath

couplings describe single-particle, number-conserving and quasilocal processes. The pairing mechanism

crucially relies on Fermi statistics. We show how such Liouvillians can be realized via reservoir

engineering with cold atoms representing a driven dissipative dynamics.
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Pairing in condensed matter physics in general, and in
atomic quantum gases in particular, is associated with con-
servative forces between particles, e.g., in Cooper pairs or
molecular BEC pairs [1]. Lattice dynamics gives rise to
exotic forms of pairing, such as the expected formation of
d-wave Cooper pairs of fermions for a 2D Hubbard model
for repulsive interactions, as discussed in the context of
high-Tc superconductivity [2], but also condensates of �
pairs [3], and the formation of repulsively bound atom pairs
[4].Herewe show that purely dissipative dynamics, induced
by coupling the system to a bath, can give rise to pairing,
even in the complete absence of conservative forces. This
‘‘dissipative pairing’’ crucially relies on Fermi statistics and
is in contrast to pairing arising from bath-mediated inter-
actions (e.g., phonon-mediated Cooper pairing). We will
discuss how reservoir engineering provides opportunities
for experimental realization of this dissipative pairing
mechanismwith cold atomic fermions in optical lattices [5].

Below we treat the example of a d-wave-paired BCS
state of two-component fermions in two dimensions (2D),
showing how the pairing can be generated via purely
dissipative processes. A BCS-type state is the conceptually
simplest many-body wave function describing a conden-

sate of N paired spin-1=2 fermionic particles, jBCSNi �
ðdyÞN=2jvaci. On a square lattice, and assuming singlet

pairs with zero center-of-mass momentum, we have dy ¼
P

q’qc
y
q;"c

y
�q;# or dy ¼ P

i;j’ijc
y
i;"c

y
j;#, where cyq;� (cyi;�)

denotes the creation operator for fermions with quasimo-
mentum q (on lattice site i) and spin� ¼" , # , and’q (’ij)

the momentum (position) wave function of the pairs.
For d-wave pairing, the pair wave function obeys ’qx;qy ¼
�’�qy;qx ¼ ’�qx;�qy , and below we choose ’q ¼
cosqx � cosqy or ’ij ¼ 1

2

P
�¼x;y��ð�i;jþe� þ �i;j�e�Þ with

�x ¼ ��y ¼ 1 corresponding to the limit of well localized

pairs [see Fig. 1(a)], and e� the unit lattice vector in � ¼ x,
y direction. For reference below we remark that in BCS

theory, with pairing induced by coherent interactions, the
corresponding energy gap function would be �q ¼
�ðcosqx � cosqyÞ in the molecular limit. The dissipative

pairing mechanism is readily generalized to other pairing
symmetries, such as, e.g., px þ ipy [6], as long as the

pairing is not on site.
While in the standard scenario BCS-type states are

typically used as variational mean-field wave functions to
describe pairing due to interactions, here the system is
dissipatively driven towards the (pure) many-body BCS

state, �ðtÞ ¼ eLt�ð0Þ !t!1jBCSNihBCSNj, beginning from
an arbitrary initial mixed state �ð0Þ. The dynamics of the
density matrix for the N-particle system �ðtÞ is generated
by a Liouville operator with the structure L� ¼
�iHeff�þ i�Hy

eff þ �
P

‘j‘�j
y
‘ with non-Hermitian effec-

tive Hamiltonian Heff ¼ H � i
2�

P
‘j

y
‘ j‘. Here, fj‘g are

non-Hermitian Lindblad operators reflecting the system-
bath coupling with strength characterized by the rate �.

FIG. 1 (color online). (a) Symmetry in the d-wave state,
represented by a single off site fermion pair exhibiting the
characteristic sign change under spatial rotations. In a d-wave
BCS state, this pair is delocalized over the whole lattice. (b),
(c) The dissipative pairing mechanism builds on (b) Pauli block-
ing and (c) delocalization via phase locking. (b) Illustration of
the action of Lindblad operators using Pauli blocking for a Néel
state (see text). (c) The d-wave state may be seen as a delocal-
ization of these pairs away from half-filling (shown is a cut along
one lattice axis).
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The Hamiltonian H generates unitary evolution, and will
be set to zero for most of the discussion. The pure paired
BCS state being the unique steady state of the dissipative
dynamics results from the possibility to identify a set of
operators with j‘jBCSNi ¼ 0 8‘ [7,8].

Below, we will identify these operators j‘ for the d-wave
paired BCS states, and in addition study the dynamics
close to the final steady state, i.e., near jBCSNi. We can
then investigate the complex excitation spectrum of L,
where, remarkably, we find a dissipative ‘‘BCS gap’’ that
implies exponential approach to the steady state.

We can readily check that the Lindblad operators j‘
generating the d-wave BCS state are given by

J�i ¼ X

�¼x;y

��ðcyiþe�
þ cyi�e�

Þ��ci; (1)

with 2-spinor ci ¼ ðci;"; ci;#ÞT and �� Pauli matrices with

� ¼ �, z or � ¼ x, y, z. An explicit construction is given
below. Remarkably, these Lindblad operators, which gen-
erate pairing dissipatively, are bilinear and number con-
serving, thus acting on a single particle only. They are also
quasilocal operators, involving only a plaquette of nearest
neighbor sites [see Fig. 1(a)].

Before entering the more technical discussion of obtain-
ing these J�i , we discuss the dynamics for states close to the
final state jBCSNi, where the physics is particularly trans-
parent and analogies to the usual case of interaction-
induced pairing in BCS theory can bemade. For states close
to jBCSNi we can linearize the master equation dynamics
using a Bogoliubov-type approach. Herewe take advantage
of the fact that we know the steady state for our problem
exactly; this knowledge can be used to construct a quadratic
theory for the fluctuations on top of it. For this purpose it is
technically convenient to give up exact particle number
conservation, and to work with fixed phase coherent states

jBCS�i ¼ N �1=2 expðei�dyÞjvaci instead of the number
states jBCSNi [1], where N ¼ Q

qð1þ ’2
qÞ ensures the

normalization. The density matrix for these states, describ-
ing the dark steady state, factorizes in momentum space

since expðei�dyÞjvaci ¼ Q
qð1þ ei�’qc

y
q;"c

y
�q;#Þjvaci. At

late times, we can therefore expand the state around
jBCS�i by making the factorized ansatz � ¼ Q

q�q, where

�q contains the modes �ðq; �Þ necessary to describe pair-

ing. We can then utilize the projection prescription �q ¼
tr�q� to find the equations of motion for the single pair

density matrices �q in the presence of nonzero mean fields.

These result from the coupling to other momentum modes,
and their values are dictated by the final state properties.
The resulting effective Hamiltonian is quadratic:

Heff ¼ �i�
2

X

q;�

f~nðcyq;�cq;� þ j’qj2cq;�cyq;�Þ

þ ~�qs�c�ðq;�Þcq;� þ H:c:g
¼ �i

2

X

q;�

�q	
y
q;�	q;�; (2)

with s" ¼ �1, s# ¼ 1 and dimensionless ‘‘gap function’’
~�q ¼ ~�’q, and where the diagonal and off diagonal mean

fields evaluate to ~n ¼ j~�j ¼ 2
R dq

ð2
Þ2
j’qj2

1þj’qj2 � 0:72 on the

d-wave state, where the integration is over the Brillouin
zone. We diagonalize Heff in the second line, introducing
quasiparticle Lindblad operators

	q;� ¼ ð1þ ’2
qÞ�1=2ðc�q;� þ s�’qc

y
q;��Þ:

In this basis, the resulting master equation reads @t� ¼
�iHeff�þ i�Hy

eff þ
P

q;��q	q;��	
y
q;�. The linearized

Lindblad operators have analogous properties to quasipar-
ticle operators familiar from interaction pairing problems:
(i) They annihilate the (unique) steady state 	q;�jBCS�i ¼
0; (ii) they obey theDirac algebra f	q;�; 	

y
q0;�0 g ¼ �q;q0��;�0

and zero otherwise [9]; and (iii) therefore are related to the
original fermions via a canonical transformation. The
imaginary spectrum of the effective Hamiltonian features
a ‘‘dissipative pairing gap’’

�q ¼ �~nð1þ ’2
qÞ � �~n:

The dissipative gap implies an exponential approach to the
steady d-wave BCS state for long times. This can be most
easily seen in a quantum trajectory representation of the
master equation, where the system’s time evolution is de-
scribed by a stochastic wave function jc ðtÞi evolving under
a non-Hermitian Hamiltonian jc ðtÞi ¼ e�iHeff tjc ð0Þi=
k � � � k interrupted with rate �kj‘jc ðtÞik2 by quantum
jumps jc ðtÞi ! j‘jc ðtÞi=k � � � k so that �ðtÞ ¼ hjc ðtÞi�
hc ðtÞjistoch (see, e.g., Ref. [10]).We thus see that (i) the BCS
state is a ‘‘dark state’’ of the dissipative dynamics in the
sense that j‘jBCSNi ¼ 0 implies that there will never be a
quantum jump, i.e., the state remains in jBCSNi, and
(ii) states near jBCSNi show an exponential decay accord-
ing to the dissipative gap. This is in marked contrast to
dissipative preparation of a noninteracting BEC in bosonic
systems, where the approach is polynomial in time [7].
This convergence to a unique pure state is illustrated in

Fig. 2 using numerical simulations for small systems. In
Fig. 2(a) we show the entropy of the full density matrix for
a small 1D system as a function of time, and in Fig. 2(b) the
fidelity of the BCS state for a small 2D grid, computed via
the quantum trajectories method.
Lindblad operators for d-wave states.—We now turn to

the construction of the Lindblad operators for the d-wave
BCS state as given in Eq. (1). We will perform this con-
struction first for an antiferromagnetic Néel state at half-
filling, and then generalize to the BCS state. For a given
many-body state jdi, we require a set of (non-Hermitian)
Lindblad operators j‘ so that it becomes the unique dark
state, j‘jdi ¼ 0 8l. Both the Néel and the BCS state have

product form, jdi ¼ Q
md

y
mjvaci. Thus, we note as a suffi-

cient dark state condition ½j‘; dym� ¼ 0.
There are two antiferromagneticNéel states at half-filling

jNþi ¼ Q
i2Ac

y
iþex;"c

y
i;#jvaci, jN�i ¼ Q

i2Ac
y
iþex;#c

y
i;"jvaci

with A a sublattice in a two-dimensional bipartite (square)
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lattice, which differ by an overall spin flip. Introducing

‘‘Néel unit cell operators’’ Ŝai;� ¼ cyiþe�
�acyi , a ¼ �; e� ¼

f�ex;�eyg, whose usefulness will become apparent soon,

the state can be written in eight different forms, jN�i ¼Q
i2AŜ

�
i;�jvaci ¼ ð�1ÞM=2

Q
i2BŜ

	
i;��jvaci, with M the lat-

tice size.We then see that the Lindblad operators must obey

½jai;�; Ŝbj;�� ¼ 0 for all i, j located on the same sublatticeA or

sublattice B, which is fulfilled for the set

jai;� ¼ cyiþe�
�aci; i 2 A or B: (3)

Note that these operators can be obtained from Ŝai;� by a

particle-hole transformation cyi;� ! ci;� on the central site i.

For the action of the operators jai;� the assumption of fermi-

onic statistics is essential, as illustrated in Fig. 1(b): they

generate spin flipping transport according to, e.g., jþi;� ¼
cyiþe�;"ci;#, which is not possible when the antiferromagnetic

order is already present. The proof of uniqueness of theNéel
steady state up to double degeneracy is then trivial: The
steady state must fulfill the quasilocal condition that for any
site occupied by a certain spin, its neighboring sites be filled
by opposite spins. For half-filling, the only states with this
property are jN�i. The residual degeneracy can be lifted by
adding a single operator ji ¼ cyiþe�

ð1þ �zÞci at arbitrary i.
To find the Lindblad operators for the d-wave BCS state,

we apply a similar strategy. We first rewrite the d-wave

generator using the operators Ŝai ,

dy ¼ i
2

X

i

ðcyiþex
� cyiþey

Þ �ycyi ¼ a
2

X

i

D̂a
i ;

D̂a
i ¼

X

�

��Ŝ
a
i;�;

where ��x ¼ ���y ¼ 1, and the quasilocal d-wave pair

D̂a
i may be seen as the ‘‘d-wave unit cell operators.’’ Note

the freedom of choosing a ¼ � in writing the state. This
form makes the physical picture of a d-wave superfluid as
delocalized antiferromagnetic order away from half-filling

[2] particularly apparent. The condition ½J�i ;
P

jD̂
b
j � ¼ 0

[� ¼ ða; zÞ] is fulfilled by

Jai ¼ X

�

��j
a
i;�; Jzi ¼

X

�

��j
z
i;�;

with jzi;� ¼ cyiþe�
�zci, establishing Eq. (1). Similar to

above, each Jai is obtained from D̂a
i by a particle-hole

transformation on the central site i. In fact, for these
operators the stronger quasilocal commutation properties
with the molecular d-wave pairs hold due to Eq. (3):

½Jai ; D̂a
j � ¼ 0 for all i, j, ½Jai ; D̂b

j � ¼ 0 for all i, j in the

same sublattice, which relies again on fermionic statistics.
In contrast, the operators Jzi only commute with the sym-

metric superposition of all d-wave pairs D̂a
j . These opera-

tors establish coherence via phase locking between
adjacent cloverleaves of sites.
The dark state uniqueness for the Lindblad operators (1)

is equivalent to the uniqueness of the ground state of the

associated Hermitian Hamiltonian H ¼ V
P

i;�¼�;zJ
�y
i J�i

for V > 0. We note that our BCS state shares the symme-
tries of H of global phase and spin rotations, and trans-
lation invariance. Based on the reasonable assumption that
no other symmetries exist, we then expect the ground state
to be unique. Note, however, the necessity of the full set
fJ�i g: Omitting, e.g., fJzi g gives rise to an additional discrete
symmetry ofH resulting in ground state degeneracy. These
results are confirmed with numerical simulations for small
systems (see Fig. 2).
The above construction method allows us to find parent

Lindblad operators for a much wider class of BCS-type
states. For example, for a px þ ipy-wave state of spinless

fermions, generated by py �P
i;���c

y
iþe�

cyi with �x ¼
���x ¼ �i�y ¼ i��y ¼ 1, the Lindblad operators are

Ji ¼
P

���c
y
iþe�

ci. More generally, they can be obtained

for any fixed number pairing state with bilocal pairing [11].
Note, however, that the construction is not applicable for
the on site (singlet) pairing states—the analogs of Eq. (1)
become local, such that the lattice sites decouple and no
phase coherence can be built up.
Physical implementation.—The quasilocal and number-

conserving form of J�i raises the possibility to realize
dissipative pairing via reservoir engineering with cold
atoms. We illustrate this, considering alkaline earthlike
atoms [12] with nuclear spin (e.g., I ¼ 1=2 for 171Yb),
and a metastable 3P0 manifold which can be trapped

independently to the ground 1S0 manifold. In this setting,

one can construct a stroboscopic implementation, where
the action of each J�i is realized successively. For clarity,
we present this initially in 1D, and choose the example of

Jþi ¼ ðcyiþ1;" þ cyi�1;"Þc#. The implementation is depicted in

Fig. 3: (i) The 3P0 state is trapped in a lattice of 3 times the

period as that for the 1S0 state, defining blocks of three sites
in the 1S0 lattice. Using this, any # atom in 1S0 on the

central site is excited to the " state of the 3P0 manifold.

(ii) By adding an additional potential the traps for 3P0 are

divided so that atoms confined in them overlap the right
and left sites of the 3-site block for 1S0. (iii) Dissipation is

FIG. 2 (color online). Numerical illustration of the uniqueness
of the steady state, showing evolution under the master equation
with Lindblad operators from Eq. (1). (a) Entropy computed
exactly for four atoms on a 4� 1 lattice, showing exponential
convergence from a completely mixed state to a pure state.
(b) Fidelity to the d-wave BCS state, hBCSNj�jBCSNi with 4
atoms on a 4� 4 grid, computed via a quantum trajectories
method (see text). Dashed lines show sampling error.
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induced via spontaneous decay, obtained by coupling
atoms in the 3P0 state off-resonantly to the 1P1 state, as

depicted in Fig. 3(a), with coupling strength�, and detun-
ing �. If we couple the 1S0-

1P1 transition to a cavity mode

with linewidth � and vacuum Rabi frequency g, then the
decay will be coherent over the triple of sites. In the limit

� 
 � and � 
 �g
� , we obtain an effective decay rate

�eff ¼ �2g2

�2�
� 9 kHz for typical parameters, which bounds

the effective dissipative rate for the stroboscopic process,
�. Provided atoms remain in the lowest band, Fermi sta-
tistics will be respected, and coherent dynamics can be
neglected in a deep lattice for small scattering lengths.

This operation can occur in parallel for different 3-site
blocks, and should be repeated with the superlattice shifted
for other central sites. Similar operations combined with
rotations of the nuclear spin before and after these opera-
tions allows implementation of J�i and Jzi . In 2D, 3� 3
plaquettes are defined by the appropriate superlattice po-
tential for the 3P0 level, and the adiabatic manipulation of

the potential in step (ii) should be adjusted to ensure that
the correct relative phases are obtained for atoms trans-
ported in orthogonal directions.

The d-wave parent Hamiltonian.—As a final remark, we
note that the effective Hamiltonian above can be general-
ized to include a coherent interaction V,

Heff ¼ ðV � i
2�Þ

X

i;�

J�yi J�i : (4)

For � ! 0 and interaction V > 0 this Hamiltonian can be
identified as a parent Hamiltonian [13] with jBCSNi as
unique stable ground state and gapped positive definite
excitation spectrum. This parent Hamiltonian could be
realized via a similar procedure to the induced dissipation,
replacing the decay in step (iii) by induced interactions
between atoms. This opens the possibility to use the

d-wave state as an initial state for the preparation of the
ground state of the Fermi-Hubbard model by a suitable
adiabatic passage [14]. Here, one can take advantage of the
fact that (i) in the initial stages the system is protected by a
gap �0:72 V, and (ii) the d-wave state has identical sym-
metry and similar energy to the conjectured Fermi-
Hubbard ground state away from half-filling. Thus, since
no phase transition has to be crossed, a d-wave superfluid
gap protection persists through the whole passage path.
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[14] S. Trebst, U. Schollwöck, M. Troyer, and P. Zoller, Phys.
Rev. Lett. 96, 250402 (2006); A. S. Sørensen et al., Phys.
Rev. A 81, 061603(R) (2010).
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spin flip. (ii) The 3P0 potential wells are adiabatically split into

two; (iii) Decay is induced, returning the atom to the 1S0 level

via coupling to a lossy cavity mode.
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