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A controversial issue on whether the electron-phonon interaction (EPI) is crucial for high-temperature

superconductivity or it is weak and inessential has remained one of the most challenging problems of

contemporary condensed matter physics. We employ a continuum random phase approximation for the

dielectric response function allowing for a self-consistent semianalytical evaluation of the EPI strength,

electron-electron attractions, and the carrier mass renormalization in layered high-temperature super-

conductors. We show that the Fröhlich EPI with high-frequency optical phonons in doped ionic lattices is

the key pairing interaction, which is beyond the BCS-Migdal-Eliashberg approximation in underdoped

superconductors, and it remains a significant player in overdoped compounds.
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For a long time, a basic question concerning the key
pairing interaction in cuprate and other high-temperature
superconductors has remained open. Some density-
functional theory (DFT) calculations [1,2] found small
electron-phonon interaction (EPI) insufficient to explain
high critical temperatures, Tc, in the framework of the
BCS-Migdal-Eliashberg (BCS-ME) approach, while
some other first-principles studies found large EPI in cup-
rates [3] and in recently discovered iron-based compounds
[4]. It is a commonplace that DFT underestimates the role
of the Coulomb correlations and nonadiabatic effects, pre-
dicting an anisotropy of electron-response functions much
smaller than that experimentally observed in the layered
high-Tc superconductors. The adiabatic DFT calculations
could not explain the optical infrared c-axis spectra and the
corresponding electron-phonon coupling in the metallic
state of the cuprates. On the other hand, these spectra are
well described within the nonadiabatic response approach
of Ref. [3]. There is a strong nonlocal polar EPI along the c
axis in the cuprates together with the optical conductivity
as in an ionic insulator even in the well-doped ‘‘metallic’’
state [3]. The inclusion of a short-range repulsion
(Hubbard U) via the LDAþ U algorithm [5] also signifi-
cantly enhances the EPI strength due to a poor screening of
some particular phonons. Substantial isotope effects on the
carrier mass and a number of other independent observa-
tions (see, e.g., Ref. [6] and references therein) unambig-
uously show that lattice vibrations play a significant
although unconventional role in high-temperature super-
conductors. Overall, it seems plausible that the true origin
of high-temperature superconductivity could be found in a
proper combination of strong electron-electron correla-
tions with a significant EPI.

Here, we calculate the EPI strength with optical pho-
nons, the phonon-induced electron-electron attraction, and
the carrier mass renormalization in layered superconduc-
tors at different doping using a continuum approximation

for the renormalized carrier energy spectrum and the
random phase approximation (RPA) dielectric response
function. The Fröhlich EPI with high-frequency optical
phonons turns out the key pairing interaction in under-
doped highly polarizable ionic lattices and remains a sig-
nificant player in overdoped compounds.
We start with a parent insulator as La2CuO4, where the

magnitude of the Fröhlich EPI is unambiguously estimated
using the static, �s and high-frequency, �1 dielectric con-
stants [7,8]. To assess its strength, one can apply an
expression for the polaron binding energy (polaronic level
shift) Ep, which depends only on the measured �s and �1,

Ep ¼ e2

2�0�

Z
BZ

d3q

ð2�Þ3q2 : (1)

Here, the integration goes over the Brillouin zone (BZ),
�0 � 8:85� 10�12 F=m is the vacuum permittivity, and
� ¼ �s�1=ð�s � �1Þ. In the parent insulator, the Fröhlich
interaction alone provides the binding energy of two holes,
2Ep, an order of magnitude larger than any magnetic

interaction (Ep ¼ 0:647 eV in La2CuO4 [8]). Actually,

Eq. (1) underestimates the polaron binding energy, since
the deformation potential and/or molecular-type (e.g.,
Jahn-Teller [9]) EPIs are not included.
It has been argued earlier [7] that the interaction with

c-axis polarized phonons in cuprates remains strong also at
finite doping due to a poor screening of high-frequency
electric forces as confirmed in some pump-probe [10,11]
and photoemission [12–14] experiments. However, a quan-
titative analysis of the doping dependent EPI has remained
elusive because the dynamic dielectric response function,
�ð!;qÞ, has been unknown.
Recent observations of the quantum magnetic oscilla-

tions in some underdoped [15] and overdoped [16] cuprate
superconductors are opening up a possibility for a quanti-
tative assessment of EPI in these and related doped ionic
lattices with the quasi-two-dimensional (2D) carrier
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energy spectrum. The oscillations revealed cylindrical
Fermi surfaces, enhanced effectivemasses of carriers (rang-
ing from 2me to 6me) and the astonishingly low Fermi
energy, EF, which appears to be well below 40 meV in
underdoped Y-Ba-Cu-O [15] and less or about 400 meV in
heavily overdoped Tl2201 [16]. Such low Fermi energies
[17] make the Migdal-Eliashberg (ME) adiabatic approach
to EPI [18] inapplicable in these compounds. Indeed,
the ME noncrossing approximation breaks down at
�@!0=EF > 1 when the crossing diagrams become impor-
tant. The characteristic oxygen vibration energy is about
@!0 ¼ 80 meV in oxides [19,20], so that the ME theory
cannot be applied even for a weak EPI with the coupling
constant � < 0:5. In the strong coupling regime, � * 0:5,
the effective parameter �@!0=EF becomes large irrespec-
tive of the adiabatic ratio, @!0=EF, because the Fermi
energy shrinks exponentially due to the polaron narrowing
of the band [21]. Since carriers in cuprates are in the non-
adiabatic (underdoped) or near-adiabatic (overdoped) re-
gimes, EF & @!0, their energy spectrum renormalized by
EPI can be found with the familiar small-polaron canonical
transformation at any coupling � [22].

The matrix element of the screened electron-phonon
(Fröhlich) interaction is found as �ð!;qÞ ¼
�0ðqÞ=�ð!;qÞ, where �0ðqÞ is the bare (unscreened) vertex
in a parent insulator [23], Fig. 1(a). In our self-consistent
approach �ð!;qÞ is calculated in the loop (RPA) approxi-
mation but with the exact (polaronic) carrier propagators
taking into account the phonon ‘‘dressing’’ of carries:

�ð!;qÞ¼1þ 2e2

�0�1q2�

X
k

fkþq=2�fk�q=2

@ð!þ i=�Þ��kþq=2þ�k�q=2

:

(2)

Here, �k is the polaron band dispersion, � is the relaxation
time, � is the normalization volume, and fk the Fermi-
Dirac distribution function. The effect of collisions cannot
be always taken into account merely by replacing ! by
!þ i=�, in the collisionless Lindhard dielectric function,
Eq. (2), in particular, at low frequencies or in the static
limit [24,25], where ladder-type vertex corrections are
important [26]. In our case the relevant frequency is the
(renormalized) optical phonon frequency, ! � !0, so that
the vertex corrections are negligible as 1=!0� � 1. More
generally, one can question the appropriateness of the RPA
form of the dielectric function, Eq. (2), which neglects
local field corrections, especially in correlated electron
systems with strong local repulsion (Hubbard U).
However, a characteristic wavelength of carriers, 2�=kF,
appears to be 1 order of magnitude larger than the lattice
constant, since the measured Fermi wave vector, kF, is very
small in underdoped cuprates [15]. It makes local field
corrections irrelevant. At overdoping, where kF is compa-
rable with the BZ size [16], such corrections might be
sizable, but they only enhance EPI in the optimally doped
and overdoped cuprates [27].
Since the Fermi surfaces measured in the quantum os-

cillation experiments [15,16] are almost perfect cylinders,
one can apply the continuum (parabolic) approximation for
the quasi-2D polaron energy spectrum, �k ¼ @

2ðk2x þ
k2yÞ=2m�, where the polaron effective mass, m� has to be

found self-consistently as a function of EPI. Calculating
the sum in Eq. (2) yields the following dielectric response
function extending the familiar pure 2D collisionless result
by Stern [28] to the 3D Coulomb interaction of carriers
with the quasi-2D energy spectrum and collisions,

�ð!;qÞ ¼ 1þ Ne2

�0�1q2m�v2
F

½�1ð!;qkÞþ i�2ð!;qkÞ�: (3)

Here and below q2 ¼ q2z þ q2k is the square of the phonon
momentum, N ¼ k2F=2�c is the carrier density, a and c
are in-plane and c-axis (chemical) unit cell constants,
respectively, and vF ¼ @kF=m

� is the Fermi velocity.
The real and imaginary parts of susceptibility are found
as (see also Ref. [29]) �1ð!;qkÞ¼2�½Rðz;z2�u;�Þþ
Rðz;z2þu;�Þ�=z2 and �2ð!;qkÞ¼½Iðz;z2�u;�Þ�
Iðz;z2þu;�Þ�=z2, where
Rðz;y;�Þ
sgnðyÞ

¼
�
y2�z2��2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðy2�z2��2Þ2þ4�2y2

p
2

�
1=2

;

(4)

Iðz;y;�Þ

¼
�
z2þ�2�y2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz2þ�2�y2Þ2þ4�2y2

p
2

�
1=2

;

(5)

FIG. 1 (color online). Diagrammatic representation of the
screened EPI vertex (a): solid lines correspond to polaron
propagators, wavy lines are the exact phonon propagator, and
the dashed line is the Coulomb repulsion. (b) long-wave disper-
sion of zeros of the dielectric function of quasi-2D carriers with
the 3D Coulomb repulsion. An optical phonon with the energy
80 meV is also shown.
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z ¼ qk=2kF, u ¼ !=ð2kFvFÞ and � ¼ 1=ð2kFlÞ (l ¼ vF�
is the mean-free path).

As shown in Fig. 1(b), a collective mode,!plðqÞ, defined
by �ð!pl;qÞ ¼ 0 appears within the same frequency range

as the optical phonon mode, !0, facilitating the plasmon-
phonon mixing (so-called plasphons [30]). Taking addi-
tionally a weak dispersion of the quasiparticles along the c
axis into account, i.e., the real three-dimensionality of the
material, leads to a strongly enhanced nonadiabatic
phonon-plasmon coupling along the c axis [3]. In the
long-wave limit we find using Eq. (3), !plðqÞ � !pqk=q
for collisionless carriers (� ¼ 0), where @!p ¼
ðe2EF=4��0�1cÞ1=2 is approximately 132 meV for EF ¼
40 meV. This mode is softer when it propagates across the
planes than along the planes, Fig. 1(b), due to a low
susceptibility of quasi-2D carriers to the electric field
applied across the planes.

The polaron level shift, Ep ¼ Vð0Þ=2, the carrier attrac-
tion induced by EPI,�VðrÞ, the in-plane polaron mass and
the mass renormalization exponent, g2, are found as [31]

VðrÞ ¼ e2

�0�ð2�Þ3
Z
BZ

d3q cosðr � qÞ
q2j�ð!0;qÞj2

; (6)

m� ¼ m expðg2Þ; (7)

and

g2 ¼ Ep � Vð ~jÞ=2
@!0

; (8)

respectively, where ~j connects nearest-neighbor sites.
Holes in cuprates reside on oxygen, so that the nearest-

neighbor hopping distance is j ¼ a=
ffiffiffi
2

p
. The BCS coupling

constant with phonons is defined as � ¼ Epma2=�@2 in

the case of 2D carriers with a constant density of states
(ma2=2�@2 per spin), where m is the bare band mass in a
rigid lattice. Using Ep * 0:6 eV and m ¼ 2me places

cuprates in the strong-coupling regime, � * 0:86.
Approximating the Brillouin zone as a cylinder of the

volume 2�2q2d=cwith the Debye momentum qD ¼ 2
ffiffiffiffi
�

p
=a

and integrating over azimuthal (in-plane) angle yield

VðrÞ
4Ec

¼
Z 1

0

Z 1

0

dtdyJ0ð
ffiffiffiffiffiffiffi
2�

p
rtÞt5ðy2 þ	t2Þ

½t2ðy2 þ	t2Þ þ 
ðt2 �<Þ�2 þ 
2=2
; (9)

where < ¼ Rðkt; t2=2� ~u; k2 ~�Þ þ Rðkt; t2=2þ ~u; k2 ~�Þ,
= ¼ Iðkt; t2=2� ~u; k2 ~�Þ � Iðkt; t2=2þ ~u; k2 ~�Þ, Ec ¼
e2c=ð2�2�0�a

2Þ � 0:71 eV (with �1 ¼ 5 and �s ¼ 30 of
La2CuO4 [8]). The on site, the nearest-neighbor, and the
next-nearest-neighbor attractions correspond to r ¼ 0, 1,ffiffiffi
2

p
, respectively. J0ðxÞ is the Bessel function, k ¼ kF=qD is

the dimensionless Fermi momentum, ~u¼!0m
�a2=4�@�

0:015ðm�=meÞ (for @!0 ¼ 80 meV), 
¼e2cm�=
ð�0��3

@
2Þ�1:23ðm�=meÞ, and 	 ¼ 4c2=�a2 � 3:93.

If one assumes that carriers are scattered off impurities
with the density equal to the carrier density, as in

La2�xSrxCuO4, then in the Born approximation ~� ¼
�0ðm�=meÞ2 with �0 independent of the carrier mass and
density. Using kFl � 20 and m� ¼ 2me as found in
YBa2Cu3O6:5 [15] yields �0 � 0:0125.
We can now evaluate the doping (x) dependence of VðrÞ

and m� by just changing the dimensionless Fermi momen-

tum, k ¼ ðx=2Þ1=2, in Eq. (9) and solving Eqs. (9), (7), and
(8) self-consistently with any bare band mass (we choose
m ¼ me in our numerical calculations). At very low doping
the on site and nearest-neighbor intersite attractions are
enormous, Vð0Þ � 1:25 eV and Vð1Þ � 0:87 eV, respec-
tively, and carriers are rather heavy, m�=m � 10. Such
heavy polarons are readily localized by disorder account-
ing for the Mott variable range hopping, which explains
conduction of lightly doped cuprates. With doping, the
attraction and the polaron mass drop, Figs. 2 and 3,
respectively. However, the on site (r ¼ 0) and the intersite
(r ¼ 1) attractions are well above the superexchange
(magnetic) interaction J (about 100 meV) in underdoped
and optimally doped compounds since the nonadiabatic
carriers cannot perfectly screen high-frequency electric
fields. Both attractions and the mass renormalization

FIG. 2 (color online). The on site, Vð0Þ (upper curve), the
nearest-neighbor, Vð1Þ (middle curve), and the next-nearest-
neighbor, Vð ffiffiffi

2
p Þ (lower curve), attractions induced by the

Fröhlich EPI for different doping x and two characteristic
phonon frequencies, @!0 ¼ 80 meV and @!0 ¼ 60 meV.
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remain also substantial at overdoping. The polaron mass,
Fig. 3, agrees reasonably well with the experimental
masses [15,16]. Increasing the phonon frequency enhances
the attraction and lowers the polaron mass in underdoped
compounds with little effect on both quantities at over-
doping, Figs. 2 and 3. Decreasing (increasing) the band
mass makes polarons lighter (heavier).

In conclusion, we have quantified the carrier-carrier
attraction and mass renormalization induced by EPI in
layered doped ionic lattices. The Fröhlich EPI with high-
frequency optical phonons turns out to be the key pairing
interaction in underdoped cuprates and remains essential at
overdoping. What is more surprising is that EPI is clearly
beyond the BCS-ME approximation since its magnitude is
larger or comparable with the Fermi energy and the carriers
are in the nonadiabatic or near-adiabatic regimes. Together
with the deformation potential and Jahn-Teller EPIs, the
Fröhlich EPI overcomes the direct Coulomb repulsion at
distances compared with the lattice constant even without
any retardation [21]. Since EPI is not local in the non-
adibatic electron system with poor screening, it can pro-
vide the d-wave symmetry of the pairing state [32]. All
these conditions point to a crossover from the bipolaronic
to polaronic superconductivity [21] in the cuprates with
doping.
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