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Exchange interaction tends to favor collinear or coplanar magnetic orders in rotationally invariant spin

systems. Indeed, such magnetic structures are usually selected by thermal or quantum fluctuations in

highly frustrated magnets. Here we show that a complex noncoplanar magnetic order with a quadrupled

unit cell is stabilized by itinerant electrons on the pyrochlore lattice. Specifically, we consider a Kondo-

lattice model with classical localized moments at quarter filling. The electron Fermi ‘‘surface’’ at this

filling factor is topologically equivalent to three intersecting Fermi circles. Perfect nesting of the Fermi

lines leads to magnetic ordering with multiple wave vectors and a definite handedness. The chiral order

might persist without magnetic order in a chiral spin liquid at finite temperatures.

DOI: 10.1103/PhysRevLett.105.226403 PACS numbers: 71.10.Fd, 71.20.Be, 71.27.+a

Magnets with geometrical frustration have fascinated
physicists for more than a decade as models of strongly
interacting systems. A prominent example of magnetic
frustration in high dimensions is the nearest-neighbor anti-
ferromagnet on the pyrochlore lattice shown in Fig. 1(a).
For classical Heisenberg spins, strong geometrical frustra-
tion prevents the magnet from settling in a long-range
magnetic order even at zero temperature [1]. Instead, the
ground state retains a finite zero-point entropy and is
susceptible to small perturbations such as anisotropies,
further-neighbor couplings, and dipolar interactions. In
real compounds, magnetic frustration is often relieved
when spins couple to other degrees of freedom. An inten-
sively studied case is spin-lattice coupling in chromium
spinels where the magnetic transition is accompanied by a
lattice distortion [2–4]. Another well known example is
magnetic phase transition facilitated by orbital order in
frustrated spin-orbital systems [5–8].

Metallic pyrochlore magnets such as Kondo-lattice or
double-exchange models pose a different challenge for
theorists due to the nonlocal nature of the electron-
mediated interactions. Indeed, despite considerable effort
[9–12], a complete picture of the phase diagram is still
lacking. An early study of the double-exchange model on a
pyrochlore lattice revealed a rich mean-field phase diagram
[9]. However, the calculation considered only magnetic
orders which preserve the lattice translational symmetry,
hence precluding magnetic structures with multiple wave
vectors. A recent Monte Carlo study of the same model
provided an unbiased phase diagram at large Hund’s cou-
pling [11]. In particular, a peculiar state with electronic
phase separation was observed. Magnetic orders in the
weak-coupling regime remain unclear.

Magnetic ordering in frustrated metallic systems depends
in an intricateway on the underlying electron Fermi surface.
At small filling factors, localized spins interact with each
other through a long-range oscillatory Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction mediated by the

electrons. A Monte Carlo simulation of pyrochlore spin-
ice with RKKY interaction showed that the sign of the
effective Curie-Weiss constant as well as that of nearest-
neighbor coupling vary with the electron Fermi wave vector
[10]. This in turn determines magnetic ordering at low
temperatures: The magnetic state of individual tetrahedra
evolves from the 2-in–2-out ferromagnetic state to the all-in
or all-out configurations with increasing electron density.

)b()a(
Z

Y

I

II

W

K
L

X

Q3

a

Y Z

X

(c)

Q3

-6

-4

-2

 0

 2

Γ X W K L Γ

ε/
t

εF

(d)

FIG. 1 (color online). (a) A conventional cubic unit cell of the
pyrochlore lattice. I and II denote the two types of tetrahedra
with different orientations. The underlying Bravais lattice is a
face-centered cubic (fcc) lattice. (b) First Brillouin zone of the
fcc lattice. At quarter filling, the electron Fermi surface consists
of diagonal lines on the square face of the Brillouin zone.
(c) Topologically, these Fermi lines are equivalent to three closed
loops intersecting at the X points of the Brillouin zone. (d) Band
structure of the tight-binding model on the pyrochlore lattice.
The segment XW corresponds to one-quarter of a Fermi circle at
quarter filling.
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The geometry of the electron Fermi surface also plays an
important role in determining the magnetic instability of
itinerant systems, particularly at commensurate filling fac-
tors. A canonical example is Néel ordering caused by
perfect Fermi surface nesting that occurs at a half-filled
square-lattice Hubbard model. While the resulting spin
structure is collinear in a bipartite square lattice, it was
shown that the nesting effect on a triangular lattice leads to
a rare noncoplanar magnetic order at filling factors 3=4 and
1=4 [13–15]. This chiral magnetic structure induces a
spontaneous quantum Hall effect in the absence of an
external magnetic field. Although a long-range magnetic
order cannot survive thermal fluctuations in two spatial
dimensions, the discrete chiral order persists up to a finite
temperature [13].

In this Letter, we demonstrate that the ground state of an
isotropic Kondo-lattice model on the pyrochlore lattice is
magnetically ordered with a noncoplanar spin structure and
a definite chirality. The noncoplanar magnetic order stems
from a weak-coupling instability caused by perfect nesting
of Fermi ‘‘circles’’ at quarter filling; the quadrupled mag-
netic unit cell contains 16 spins. In contrast to the
triangular-lattice model [13], this noncoplanar spin order
does not support a spontaneous Hall insulator because of a
trivial Berry phase acquired by the electrons when travers-
ing a tetrahedron. The magnetic structure itself, on the
other hand, has a definite handedness and is characterized
by a nonzero chiral order parameter.

It should be pointed out that, although chiral magnetic
orders have been reported in metallic pyrochlore oxides
such as Pr2Ir2O7 [16], the noncoplanarity of spins in these
so-called spin-ice compounds is mainly created by a strong
uniaxial anisotropy. The electron-driven magnetic instabil-
ity in pyrochlore spin ice at quarter filling will be briefly
discussed at the end of the Letter.

We begin with the isotropic Kondo-lattice Hamiltonian
on the pyrochlore lattice:

H ¼ �t
X

hiji
ðcyi�cj� þ H:c:Þ þ J

X

hiji
Si � Sj

þ K
X

i

Si � cyi����ci�: (1)

The first term describes electron hopping between nearest-

neighbor sites; t is the transfer integral and cyi� creates an
electron with spin � on site i. The second term represents
the superexchange interaction between neighboring local-
ized spins Si. The itinerant electrons interact with the
localized spins through an on-site exchange coupling
K as described by the third term, where ��� is a vector

of the Pauli matrices. Here we consider the classical limit
jSij ¼ S � 1 of the localized spins. In this limit, the
electron spectrum is independent of the sign of K, and
the eigenstates corresponding to opposite signs are con-
nected by a global gauge transformation [13].

We first consider the tight-binding spectrum of electrons
on the pyrochlore lattice. In momentum space, the hopping
Hamiltonian [first term in Eq. (1)] is expressed as

Ht ¼ P
m;n

P
k;� �mnðkÞcym�ðkÞcn�ðkÞ, where m and n are

sublattice indices and the hopping matrix is

�ðkÞ ¼ �2t

0 cyz czx cxy
cyz 0 �cxy �czx
czx �cxy 0 �cyz
cxy �czx �cyz 0

0
BBB@

1
CCCA: (2)

We have introduced cab ¼ cos½ðka þ kbÞ=4� and
�cab ¼ cos½ðka � kbÞ=4� and set the length of a cubic unit
cell a ¼ 1. This hopping matrix can be exactly diagonal-
ized, giving rise to energy bands shown in Fig. 1(d). The
spectrum consists of two degenerate flat bands "flatk ¼ 2t
and two dispersive bands:

"�k ¼ �2tð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQk

q
Þ; (3)

where Qk ¼ coskx2 cos
ky
2 þ cos

ky
2 coskz2 þ coskz2 coskx2 .

These two branches touch each other along the diagonal
lines of the square faces of the Brillouin zone [Fig. 1(b)].
At quarter filling the lowest band "�k is completely filled.

The corresponding Fermi ‘‘surface’’ is determined by
"þk ¼ "�k and consists of diagonal lines 2�ðx; 0; 1Þ, and
so on, on the square faces of the zone boundary. The
Fermi energy lies exactly at EF ¼ �2t. Noting that
2�ðx; 0; 1Þ � 2�ð1� x; 1; 0Þ module a reciprocal lattice
vector, these diagonal lines are topologically equivalent to
three closed loops, or circles, intersecting with each other
at the X points of the Brillouin zone [Figs. 1(b) and 1(c)]. In
the vicinity of these Fermi lines, the spectrum has the
singular form "�k � EF � C’jk?j, where k? is the per-

pendicular component of electron momentum.
Perfect nesting of the Fermi surface refers to the exis-

tence of wave vectorsQi connecting large parallel areas of
the surface such that "ðkÞ ¼ "ðkþQiÞ for all wave vec-
tors k on the Fermi surface. This condition, in general,
cannot be satisfied for a generic Fermi surface in two or
three dimensions. However, the Fermi surface in our case
consists of three sets of parallel Fermi lines and can be
perfectly nested by three wave vectors Q1 ¼ 2�ð1; 0; 0Þ,
Q2 ¼ 2�ð0; 1; 0Þ, and Q3 ¼ 2�ð0; 0; 1Þ. For example,
wave vectors on the two blue Fermi lines k ¼ 2�ð1; 0; zÞ
and k0 ¼ 2�ð0; 1; zÞ, both belonging to the blue circle in
Fig. 1(c), are connected by Q3 up to a reciprocal lattice
vector. The van Hove singularity of the density of states at
the Fermi level gives rise to a logarithmically divergent
Lindhard susceptibility: �ðqÞ 	 � logjq�Q�j, indicating
a nesting-induced weak-coupling instability.
To investigate possible magnetic ordering due to perfect

nesting of the Fermi lines, we consider spin orders which
can be expanded as

S i ¼ SmðrÞ ¼
X3

�¼0

Mm;�e
iQ��r; (4)

where m is the sublattice index and r denotes the position
of the Bravais (fcc) lattice point. In order to accommodate,
e.g., ferromagnetic ordering, we have included a Q0 ¼ 0
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component in the above expansion. The unit cell of this
multiple-Q magnetic order is extended to the conventional
cubic unit cell which contains 16 spins.

Next we consider the on-site Hund’s exchange which
couples electrons to the localized spins. In momentum
space, the multiple-Qmagnetic order introduces couplings
between a pair of electrons whose momenta differ by the
nesting vectors Q�:

HK ¼X

�;�

X

�;�

X

m;k

0cym�ðkþQ�ÞMðmÞ
��;��cm�ðkþQ�Þ: (5)

Here the prime indicates that the momentum summation is
restricted to the reduced Brillouin zone [see Fig. 3(b)], and
the coupling coefficients are given by

M ðmÞ
��;�� ¼ K���;� ðMm;� � ���ÞeiðQ��Q�Þ�dm; (6)

where dm denotes basis vectors of the pyrochlore lattice.
Momentum conservation of the coupling is encoded in
the symbol ���;� , which is symmetric with respect to

the first two indices. The nonzero components include
�01;1 ¼ �02;2 ¼ �03;3 ¼ �23;1 ¼ �31;2 ¼ �12;3 ¼ 1.

For a given set of Fourier components Mm;�, diagonal-

ization of the electron HamiltonianHt þHK gives a total of
32 energy bands. At quarter filling, the ground-state energy
of electrons Ee is obtained by filling the lowest eight bands.
However, the determination of the minimum-energy state is
not straightforward because of the large number of variables
required to describe the complex magnetic order; one needs
32 variables to specify the 16 classical spins in a quadrupled
unit cell. To this end, we employ the simulated annealing
method to minimize the energy functional EeðMm;�Þ. For
J ¼ 0 and K <Kc � 4:32t, numerical minimization yields
a noncoplanar magnetic order shown in Fig. 2 starting from
different initial configurations. Above the critical coupling
K >Kc, the ferromagnetic order with Si ¼ Sn̂ takes over
and becomes the ground state.

To characterize the noncoplanar spin structure, we
introduce three order parameters L1 ¼ ðS0 þ S1 � S2

�S3Þ=4S, and so on [4], which measure the staggered
magnetizations of a tetrahedron; the spin subscript indi-
cates the corresponding sublattice. A unit cell of the mag-
netic order is shown in Fig. 2(a), where the magnetic states
of type-I tetrahedra are described by order parameters

L 1¼ n̂1ffiffiffi
3

p eiQ3�r; L2¼ n̂2ffiffiffi
3

p eiQ1�r; L3¼ n̂3ffiffiffi
3

p eiQ2�r: (7)

Here n̂r’s are three mutually orthogonal unit vectors.
Remarkably, the noncoplanar magnetic order is a simulta-
neous ground state of the intersite exchange interaction. To
see this, we note that the superexchange term in Eq. (1) can
be recast to HJ ¼ ðJ=2ÞPhjMhj2, whereMh ¼ P3

m¼0 Sm

is the total magnetization of a tetrahedron. For the mag-
netic order shown in Fig. 2, the total spin of every tetrahe-
dron, including both types, vanishes identically, hence
minimizing the exchange energy. This result also indicates

that the ferromagnetic order favored by a large Hund’s
couplingK is suppressed by the antiferromagnetic intersite
exchange.
Figure 3(a) shows the electron band structure corre-

sponding to the noncoplanar magnetic order. The spectrum
is at least doubly degenerate thanks to a combined lattice
translation and spin rotation symmetry. Because of the
nesting effect, a charge gap opens between the lower four
pairs of bands and other high energy branches. It is known
that the electron experiences a fictitious magnetic field
proportional to the spin chirality �ijk ¼ Si � Sj 
 Sk

when hopping around a triangular loop [16]. Although
�ijk is nonzero in the noncoplanar structure, the contribu-

tions from the four triangular faces of a tetrahedron cancel
each other due to a monopolelike spin configuration. The
noncoplanar magnetic order thus does not exhibit a sponta-
neous quantum Hall effect.
The magnetic structure itself, nonetheless, breaks the

chiral symmetry. This is best illustrated by projection of
the triple-Q magnetic order onto a (111) kagome plane
which shows hexagons and triangles with a definite hand-
edness [Fig. 2(b)]. More specifically, we introduce a scalar
chirality for a tetrahedron in the antiferromagnetic state:
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FIG. 3 (color online). (a) Electron band structure corresponding
to the noncoplanar magnetic order shown in Fig. 2. The Hund’s
coupling is K ¼ t and superexchange constant J ¼ 0. (b) The
reduced Brillouin zone with high-symmetry points and lines.
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FIG. 2 (color online). (a) A unit cell of the noncoplanar
magnetic order viewed from the c axis. Here we choose n̂1 ¼
â, n̂2 ¼ b̂, and n̂3 ¼ ĉ in Eq. (7). (b) Chiral structure of the same
magnetic order projected onto a (111) kagome plane. The � and
� symbols denote a spin component coming out of and into the
plane, respectively. The same handedness (right-handed in this
case) is observed in other kagome planes.
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�h ¼ 3
ffiffiffi
3

p
L1 �L2 
L3: (8)

The noncoplanar magnetic order shown in Fig. 2 has the
maximum chirality h�hi ¼ þ1, where the average is over
both types of tetrahedra. This is to be contrasted with the
so-called all-in all-out structure [Fig. 4(a)] in which
the two types of tetrahedra have opposite chiralities
h�Ii ¼ �h�IIi; the average chirality is thus zero.

The model described by Eq. (1) with a negative K was
recently investigated in Ref. [11] with the aid of
Monte Carlo simulations. The authors also considered the
special case of quarter filling. However, since the simula-
tions were performed assuming a large Hund’s coupling,
the noncoplanar magnetic order shown in Fig. 2 was not
observed in their simulations. Although the fine structure
of the electron Fermi surface is absent in small finite
systems, the noncoplanar magnetic order could be obtained
in Monte Carlo simulations at small Hund’s coupling by
using techniques such as twisted boundary conditions [11].

We now turn to the spin-ice compounds where the rota-
tional symmetry is explicitly broken by a strong easy-axis
anisotropy HD ¼ �D

P
iðSi � êmÞ2. The effective degrees

of freedom become discrete Ising variables as spins
are forced to point along the local h111i directions, i.e.,
Si ¼ �Sêm. At filling factor 	 ¼ 1=4, we found a ground
state with the all-in all-out magnetic structure [Fig. 4(a)] in
the J ¼ 0 limit. It remains the ground state in the presence
of antiferromagnetic exchange as Mh ¼ 0 on all tetrahe-
dra. In spin-ice compounds, however, the nearest-neighbor
exchange has a ferromagnetic sign, i.e., J ¼ �jJj.
AssumingD � jJj � t; K, numerical minimization yields
a single-Q magnetic order consisting of 2-in–2-out tetra-
hedra [Fig. 4(b)]: the magnetizations of type-I and type-II
tetrahedra point along the a and b axes, respectively, with
their sign alternating between adjacent ab planes.

Both magnetic orders shown in Fig. 4 were observed in a
recent Monte Carlo study on a metallic pyrochlore spin ice
[10]. Instead of tackling the Kondo-lattice model directly, the
simulations in Ref. [10] were performed assuming a long-
range RKKY interaction between localized spins. The case
of quarter filling with a 2-in–2-out magnetic ground state
lies very close to the boundary separating these two spin

structures [10]. Since the RKKY interaction is derived by
integrating out the electrons with a spherical Fermi surface,
this approach is valid only at small filling fractions where the
spectrum can be approximated by a quadratic dispersion.
In summary, we have studied a model of itinerant elec-

trons interacting with localized classical spins on the
pyrochlore lattice. At quarter filling, we showed that a
noncoplanar magnetic order emerges as the ground state
of the rotationally invariant Hamiltonian. The magnetic
structure characterized by a nonzero order parameter �h

also breaks the chiral symmetry. Since from the symmetry
viewpoint the chiral transition need not coincide with the
magnetic ordering, a chiral phase with h�hi � 0 but no
spin order hLii ¼ 0 could occur at finite temperatures.
Such a scenario was recently reported in spin-ice com-
pound Pr2Ir2O7, where a nonzero spin chirality was
observed in an intermediate phase with disordered spins
[17]. Future studies, especially large-scale Monte Carlo
simulations, could numerically demonstrate the noncopla-
nar magnetic structure and explore the possibility of the
partially ordered chiral phase.
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FIG. 4 (color online). (a) All-in all-out structure. (b) The 2-
in–2-out magnetic order with wave vector Q3 ¼ 2�ð0; 0; 1Þ. The
� and � symbols again denote a spin component coming out of
and into the plane, respectively.
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