
Topological Nature of the Phonon Hall Effect

Lifa Zhang,1 Jie Ren,2,1 Jian-Sheng Wang,1 and Baowen Li2,1

1Department of Physics and Centre for Computational Science and Engineering, National University of Singapore,
Singapore 117542, Republic of Singapore

2NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Republic of Singapore
(Received 2 August 2010; published 24 November 2010)

We provide a topological understanding of the phonon Hall effect in dielectrics with Raman spin-

phonon coupling. A general expression for phonon Hall conductivity is obtained in terms of the Berry

curvature of band structures. We find a nonmonotonic behavior of phonon Hall conductivity as a function

of the magnetic field. Moreover, we observe a phase transition in the phonon Hall effect, which

corresponds to the sudden change of band topology, characterized by the altering of integer Chern

numbers. This can be explained by touching and splitting of phonon bands.
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Recent years have witnessed a rapid development of
an emerging field—phononics, the science and technol-
ogy of controlling heat flow and processing information
with phonons [1]. Indeed, in parallel with electronics,
various functional thermal devices such as thermal
diodes [2], thermal transistors [3], thermal logic gates
[4], and thermal memory [5], etc., have been proposed to
manipulate and control phonons, the carriers of heat
energy and information. However, different from elec-
trons, phonons as neutral quasiparticles cannot directly
couple to the magnetic field through the Lorentz force.
Therefore, it is a surprise that Strohm, Rikken, and
Wyder observed the phonon Hall effect (PHE)—the ap-
pearance of a temperature difference in the direction
perpendicular to both the applied magnetic field and
the heat current flowing through an ionic paramagnetic
dielectric sample [6]. It was confirmed later by
Inyushkin and Taldenkov [7]. Since then, several theo-
retical explanations have been proposed [8–10] to under-
stand this novel phenomenon.

For electronic transport properties in various quantum,
spin, or anomalous Hall effects [11–13], topological Berry
phase has been successfully used to understand the under-
lying mechanism [14]. Such an elegant connection be-
tween mathematics and physics provides a broad and
deep understanding of basic material properties.
However, because of the very different nature of electrons
and phonons, a topological picture related to the PHE is
not straightforward and obvious and, therefore, is still
lacking.

In this Letter, we explore the topology of phonon bands
in a two-dimensional honeycomb lattice with Raman-type
spin-phonon interaction. A general expression for phonon
Hall conductivity in terms of Berry curvature is derived.
The phonon Hall effect is not quantized, although the
Chern numbers are quantized to integers. We find that there
exists a phase transition associated with the PHE, due to
the discontinuous jump of Chern numbers.

We start with a Hamiltonian for an ionic crystal lattice in
a uniform external magnetic field [15], which reads in a
compact form as

H ¼ 1
2ðp� ~AuÞTðp� ~AuÞ þ 1

2u
TKu

¼ 1
2p

Tpþ 1
2u

TðK � ~A2Þuþ uT ~Ap: (1)

Here, u is a column vector of displacements from lattice
equilibrium positions for all the degrees of freedom, multi-
plied by the square root of mass, p is the conjugate
momentum vector, and K is the force constant matrix.

The superscript T stands for the matrix transpose. ~A is an
antisymmetric real matrix, which is block diagonal with
elements

� ¼ 0 h
�h 0

� �

(in two dimensions), where h is proportional to the magni-
tude of the applied magnetic field and has the dimension of
frequency. For simplicity, we will call h the magnetic field

later. The on-site term uT ~Ap can be interpreted as the
Raman (or spin-phonon) interaction [16]. The Hamiltonian
(1) is positive definite.
By applying Bloch’s theorem, we can describe the sys-

tem by the polarization vector x ¼ ð�; �ÞT , where � and �
are associated with the momenta and coordinates, respec-
tively. The equation of motion can be expressed as

i
@

@t
x ¼ Heffx; Heff ¼ i

�A �D
I �A

� �
; (2)

where DðkÞ ¼ �A2 þP
l0Kl;l0e

iðRl0�RlÞ�k is the dynamic

matrix as a function of wave vector k, Kl;l0 is the submatrix

between unit cell l and l0 in the full spring constant matrix
K, Rl is the real-space lattice vector, A is block diagonal
with elements �, and I is an identity matrix. Here, D, A,
Kl;l0 , and I are all 4� 4 matrices for the two-dimensional

honeycomb lattice. The eigenvalue problem of the equa-
tion of motion (2) reads
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Heffx� ¼ !�x�; (3)

where x� ¼ ð��; ��ÞT is the right eigenvector of the �th
branch and !� is the corresponding eigenfrequency.
Because of the non-Hermitian nature of Heff , the left

eigenvector is different and is given by ~xT� ¼ ð ~��; ~��Þ ¼
ð�y�;��y

�Þ=ð�2i!�Þ. The orthonormal condition is

�y���0 þ i
!�

�y�A��0 ¼ ��;�0 [10].

By taking into account only positive eigenfrequency
modes, displacement and momentum operators can be
written in the second quantization form. From the defini-
tion of energy current density J ¼ 1

2V

P
l;l0 ðRl �

Rl0 ÞuTl Kl;l0 _ul0 [8,9,17], the current density vector can be

expressed as

J ¼ J1ðayaÞ þ J2ðayay; aaÞ: (4)

Here, J1 ¼ @

4V

P
k;k0 ½ð!k þ!k0 Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffi

!k!k0
p ��yk @DðkÞ

@k �k0a
y
k ak0

eið!k�!k0 Þt�k;k0 and J2 ¼ @

4V

P
k;k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!k0=!k

p ð�yk @DðkÞ
@k ��k0a

y
k

ay
k0e

ið!kþ!k0 Þt þ �Tk
@D�ðkÞ
@k �k0akak0e

�ið!kþ!k0 ÞtÞ�k;�k0 , where

k ¼ ðk; �Þ considers both the wave vector and the phonon
branch. It should be noted that the ayay and aa terms also
contribute to the off-diagonal elements of thermal conduc-
tivity tensor, although they have no contribution to the

average heat flux. The diagonal term �yk
@DðkÞ
@k �k in J1

corresponds to !�
@!�

@k . Only the off-diagonal terms in J1
and J2 contribute to the Hall conductivity, which can be
regarded as the contribution from anomalous velocities
similar to the one in the intrinsic anomalous Hall effect

[12]. Using the Green-Kubo formula �xy ¼ V
@T �R�@

0 d�
R1
0 dthJxð�i�ÞJyðtÞieq [18], one can obtain phonon

Hall conductivity as [16]

�xy ¼ @

8VT

X
���0

fð!�Þð!� þ!�0 Þ2 i

4!�!�0

�
�y� @D

@kx
��0�y

�0
@D
@ky

�� � ðkx $ kyÞ
ð!� �!�0 Þ2 ; (5)

where fð!�Þ ¼ ðe@!�=ðkBTÞ � 1Þ�1 is the Bose distribution
function, V is the total volume of the sample, and the
phonon branch index � here includes both the positive
and negative eigenvalues without restrictions. It can be
proved that the phonon Hall conductivity �xy satisfies the

Onsager reciprocal relations [16].
In Fig. 1, we show the phonon Hall conductivity of

honeycomb lattices calculated from Eq. (5). The parame-
ters used in our numerical calculations are the same as in
Ref. [10]. The coupling matrix between two sites is con-

figured such that the longitudinal spring constant is KL ¼
0:144 eV=ðu �A2Þ and the transverse one KT is 4 times
smaller. The unit cell lattice vectors are ða; 0Þ and

ða=2; a ffiffiffi
3

p
=2Þ with a ¼ 1 �A.

It is found that when h is small, �xy is proportional to h

[16], while the dependence becomes nonlinear when h is

large. As h is further increased, �xy increases before it

reaches a maximum at a certain value of h. Then �xy

decreases and goes to zero at very large h. This can be
understood as follows: Numerical calculation shows that
!� � �h, which can also be obtained from the equation
½ð�i!� þ AÞ2 þD��� ¼ 0 [16]; thus, we can obtain
approximately �xy � h2=ðe�@�h � 1Þ from Eq. (5). In the

weak magnetic field limit �xy / h, while in the strong field

limit �xy ! 0. The on-site term ~A2 in the Hamiltonian (1)

increases with h quadratically so as to blockade the phonon
transport, which competes with the spin-phonon interac-
tion. Therefore, as h increases, �xy first increases, then

decreases, and tends to zero at last. At low temperatures,
�xy oscillates around zero with the variation of h, as shown

in the inset in Fig. 1(a).
There is a subtle singularity near h ’ 25 rad=ps in

Fig. 1(a); we thus plot the first derivative of �xy with

respect to h at different temperatures in Fig. 1(b). It shows
that, at the relatively high temperatures, the first derivative
of phonon Hall conductivity has a minimum at the mag-
netic field hc ’ 25:4778 rad=ps for the finite-size sample
NL ¼ 400 (the sample has N ¼ N2

L unit cells). The first
derivative d�xy=dh at the point hc diverges when the

system size increases to infinity. The inset in Fig. 1(b)
shows the finite-size effect. At the point hc, the second
derivative d2�xy=dh

2 is discontinuous. Therefore, hc is a

critical point for the PHE, across which a phase transition
occurs. At low temperatures, the divergence of d�xy=dh is

not so evident as that at high temperatures. However, if the
sample size becomes larger, the discontinuity of d2�xy=dh

2

is more obvious, as illustrated in Fig. 1(b). For different
temperatures, the phase transition occurs at exactly the

FIG. 1 (color online). (a) Phonon Hall conductivity vs mag-
netic field for different temperatures. The dotted, dashed, and
solid lines correspond to T ¼ 50, 100, and 300 K, respectively.
The inset shows h dependence of �xy at low temperatures: T ¼
10 (solid line), 20 (dashed line), and 40 K (dotted line).
(b) d�xy=dh as a function of h at different temperatures: T ¼
50 (dotted line), 100 (dashed line), and 300 K (solid line); here
NL ¼ 400. The inset in (b) shows the h dependence of d�xy=dh

for different sizes NL at T ¼ 50 K, around h � 25:5 rad=ps;
from top to bottom, NL ¼ 80, 320, and 1280, respectively.
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same critical value hc, which strongly suggests that the
phase transition of the PHE is related to the topology of the
phonon band structure.

In the following, we would like to connect the PHE with
the Berry phase to examine the underlying topological
mechanism. As is well known, the band structure of crystals
provides a natural platform to investigate the geometric
phase effect. Since the wave-vector dependence of the
polarization vectors is inherent to the Hall problems, the
Berry phase effects are intuitively expected for the PHE in
the momentum space. Following Berry’s approach [14], we

set xðtÞ ¼ ei	�ðtÞ�i
R

t

0
dt0!�½kðt0Þ�x�½kðtÞ� and then insert it

into Eq. (2). The Berry phase is obtained as 	� ¼ H
A�

k �
dk, withA�

k ¼ i~xT�
@x�
@k , and the Berry curvature emerges as

��
kxky

¼ @

@kx
A�

ky
� @

@ky
A�

kx
¼ X

�0;�0��

���0
kxky

; (6)

where

���0
kxky

¼ i

4!�!�0

�y� @D
@kx

��0�y
�0

@D
@ky

�� � �y� @D
@ky

��0�y
�0

@D
@kx

��

ð!� �!�0 Þ2
(7)

is the contribution to the Berry curvature of the band� from
a different band�0. The associated topological Chern num-
ber is obtained through integrating the Berry curvature over
the first Brillouin zone as

C� ¼ 1

2


Z
BZ

dkxdky�
�
kxky

¼ 2


L2

X
k

��
kxky

; (8)

where L is the length of the sample. The phonon Hall
conductivity formula [Eq. (5)] is recast into

�xy ¼ @

8VT

X
k;���0

fð!�Þð!� þ!�0 Þ2���0
kxky

: (9)

Here V ¼ L2a. The term ð!� þ!�0 Þ2 relating to the pho-
non energy is an analog of the electrical charge term e2 in
the electron Hall effect; thus, the phonon Hall conductivity
[Eq. (9)] is similar to but different from the electron case
because the phonon energy term cannot be moved out from
the summation. Although the formula is derived from the
phonon transport in the crystal-lattice system, we note that
the thermal Hall conductivity for the magnon Hall effect
[19] can also be cast into the form of Eq. (9) with a different
expression for the Berry curvature. Therefore, the Hall
conductivity formula can be universally applicable to the
thermal Hall effect in phonon and magnon systems without
restriction for special lattice structures.

Without the Raman spin-phonon interaction, namely,

h ¼ 0, ���0
kxky

is zero everywhere and the phonon Hall

conductivity vanishes. When a magnetic field is applied,
the Berry curvature is nonzero, and, consequently, the PHE
appears. It is found that if the system exhibits symmetry
satisfying SDS�1 ¼ D, SAS�1 ¼ �A (e.g., mirror reflec-
tion symmetry), the phonon Hall conductivity is zero

[10,16]. This symmetry principle can also be applied to
the topological property of the phonon bands: We find that

���0
kxky

¼ 0 provided that such symmetry exists, such as in

the square lattice system, whereas if such symmetry is
broken for the dynamic matrix, the system can possess
nontrivial Berry curvatures. In the system with the PHE,
if the magnetic field changes, the Berry curvatures are
quite different. However, we find that the associated topo-
logical Chern numbers remain constant integers with occa-
sional jumps when h is varied. Therefore, the Chern
numbers given by Eq. (8) are topological invariant, which
indeed illustrates the nontrivial topology of the phonon
band structures. Although the Chern numbers are quan-
tized to integers, the phonon Hall conductivity is not, due
to the extra term fð!�Þð!� þ!�0 Þ2. Thus, the analogy to
the quantum Hall effect is incomplete.
In the vicinity of the critical magnetic field hc, we find

that the phase transition is indeed related to the abrupt
change of the topology of band structures. The Berry cur-
vatures for different bands near the critical magnetic field
are illustrated in Figs. 2(a)–2(f) and 2(h). We find that, with
an infinitesimal change of magnetic field around hc, the
Berry curvatures around the � (k ¼ 0) point of bands 2 and
3 are quite different, whereas those of bands 1 and 4 remain
unchanged. To illustrate the change of the Berry curvatures
clearly, we plot the cross section of the Berry curvatures
along the kx direction for bands 2 and 3 in Fig. 2(i), which
shows explicitly that the Berry curvatures change dramati-
cally above and below the critical magnetic field hc. Below
the critical point, the Berry curvature for band 2 in the
vicinity of � point contributes Berry phase 2
 (� 2
 for
band 3), which cancels that fromK andK0 points, so that the
Chern number is zero for bands 2 and 3, as indicated in
Fig. 2(j). However, above the critical point, the sum of
Berry curvature at � point is zero, and only the monopole
at K and K0 points contributes to Berry phase (� 2
 for
band 2 and 2
 for band 3). Therefore, the Chern numbers
jump from 0 to �1, as shown in Fig. 2(j). This jump
indicates that the topology of the two bands suddenly
changes at the critical magnetic field, which is responsible
for the phase transition. From a calculation on the kagome
lattice, which has been used to model many real materials
[20], we also find qualitatively similar phase transitions due
to the sudden change of topology, where the phonon Hall
conductivity has three singularities of divergent first deriva-
tives corresponding to three jumps of the Chern numbers.
To further investigate the mechanism of the abrupt

change of the phonon band topology, we study the disper-
sion relation near the critical magnetic field. FromFig. 2(k),
we can see that bands 2 and 3 are going to touch with each
other at the � point if the magnetic field increases to hc; at
the critical magnetic field, the degeneracy occurs and the
two bands possess the cone shape; above the critical point
hc, the two bands split up. Therefore, the difference be-
tween the two bands decreases below and increases above
the critical point hc. The property of the dispersion relation
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in the vicinity of the critical magnetic field directly affects
the Berry curvature of the corresponding bands.

In summary, we have studied the PHE from a topological
point of view. By looking at the phases of the polarization
vectors of both the displacements and conjugate momenta
as a function of the wave vector, a Berry curvature can be
defined uniquely for each band. This Berry curvature can be
used to calculate the phonon Hall conductivity. Because of
the nature of phonons, the phonon Hall conductivity, which
is not directly proportional to the Chern number, is not
quantized. However, the quantization effect, in the sense
of discontinuous jumps in Chern numbers, manifests itself
in the phonon Hall conductivity as a singularity of the first
derivative with respect to the magnetic field.

The topological approach for phonon Hall conductivity
proposed here is general and can be applied to real materials
in low temperatures where the thermal transport is ballistic.
It can also be applied to the magnon Hall effect discovered
recently [19]. Phase transition in the PHE, explained from
topological nature and dispersion relations, can also be
generalized to study the phase transition in other Hall
effects and/or nonequilibrium transport. In line with

recently reported Berry-phase-induced heat pumping [21]
and the Berry-phase contribution of molecular vibrational
instability [22], we hope our present results do invigorate
the studies aimed at uncovering intriguing Berry phase
effects and topological properties in phonon transport,
which will enrich further the discipline of phononics.
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magnetic fields. The solid and dashed lines correspond to�2 and
�3 at hc�, respectively, while dotted and dash-dotted lines
correspond to those at hcþ. ( j) Chern numbers of four bands:
C1 (solid line), C2 (dashed line), C3 (dotted line), and C4 (dash-
dotted line). (k) The dispersion relation of bands 2 and 3 at
different magnetic fields in the vicinity of hc. The dashed, solid,
and dotted lines correspond to the bands at hc�, hc, and hcþ,
respectively. The lower three and upper three correspond to
bands 2 and 3, respectively. ky ¼ 0 in (i) and (k).

PRL 105, 225901 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

26 NOVEMBER 2010

225901-4

http://dx.doi.org/10.1103/PhysRevLett.93.184301
http://dx.doi.org/10.1103/PhysRevLett.93.184301
http://dx.doi.org/10.1126/science.1132898
http://dx.doi.org/10.1063/1.2191730
http://dx.doi.org/10.1063/1.2191730
http://dx.doi.org/10.1103/PhysRevLett.99.177208
http://dx.doi.org/10.1103/PhysRevLett.101.267203
http://dx.doi.org/10.1103/PhysRevLett.95.155901
http://dx.doi.org/10.1103/PhysRevLett.95.155901
http://dx.doi.org/10.1134/S0021364007180075
http://dx.doi.org/10.1134/S0021364007180075
http://dx.doi.org/10.1103/PhysRevLett.96.155901
http://dx.doi.org/10.1103/PhysRevLett.96.155901
http://dx.doi.org/10.1103/PhysRevLett.100.145902
http://dx.doi.org/10.1103/PhysRevLett.100.145902
http://dx.doi.org/10.1103/PhysRevB.80.012301
http://dx.doi.org/10.1088/1367-2630/11/11/113038
http://dx.doi.org/10.1088/1367-2630/11/11/113038
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/RevModPhys.82.1539
http://dx.doi.org/10.1143/JPSJ.77.031007
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1007/BF02735509
http://link.aps.org/supplemental/10.1103/PhysRevLett.105.225901
http://link.aps.org/supplemental/10.1103/PhysRevLett.105.225901
http://dx.doi.org/10.1103/PhysRev.132.168
http://dx.doi.org/10.1103/PhysRevLett.104.066403
http://dx.doi.org/10.1103/PhysRevLett.104.066403
http://dx.doi.org/10.1126/science.1188260
http://dx.doi.org/10.1126/science.1188260
http://dx.doi.org/10.1143/PTP.6.306
http://dx.doi.org/10.1143/JPSJ.25.902
http://dx.doi.org/10.1143/JPSJ.25.902
http://dx.doi.org/10.1088/0305-4470/21/9/032
http://dx.doi.org/10.1088/0305-4470/21/9/032
http://dx.doi.org/10.1103/PhysRevLett.62.2405
http://dx.doi.org/10.1103/PhysRevLett.65.3173
http://dx.doi.org/10.1103/PhysRevLett.104.170601
http://dx.doi.org/10.1103/PhysRevLett.104.170601
http://dx.doi.org/10.1021/nl904233u
http://dx.doi.org/10.1021/nl904233u

