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The supercooled N3 model exhibits an increasingly slow dynamics as density approaches the random

closest packing density. Here, we present a direct measurement of the dynamical correlation function

G4ðr; tÞ, showing the emergence of a growing length scale �4 across which the dynamics is correlated. The

correlation length measured, up to 120 lattice sites, power law diverges as the density approaches �t, the

density at which the fluid phase of the model is predicted to terminate. The four-point susceptibility, often

used as an agent to estimate �4, does not depend simply on the latter. Rather, it depends strongly on the

short-range behavior of G4ðr; tÞ. Consequently, �4 peaks before �4 reaches its maximal value. The two

quantities should therefore be studied independently.
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Dynamics of supercooled liquid glass formers is char-
acterized by nonexponential temporal relaxation (see re-
cent review [1]). Two natural, but fundamentally different,
explanations can be put forward. Relaxation might be
locally exponential, but the typical relaxation timescale
varies spatially. Global response functions become nonex-
ponential upon spatial averaging, due to the spatial distri-
bution of relaxation times. Alternatively, relaxation might
be complicated and inherently nonexponential, even lo-
cally. Experimental and theoretical works [2] suggest that
while the latter mechanism is likely to contribute, relaxa-
tion (at times of order of the global relaxation time or
shorter) is indeed spatially heterogeneous. At an ideal glass
transition, the relaxation time diverges and the dynamics
remains heterogeneous for arbitrary long times. The study
of dynamical heterogeneities has attracted much interest
recently [3–9], as part of the attempt to decipher the
mystery of glassy dynamics.

A physical characterization of dynamic heterogeneity
entails the determination of the typical lifetime of the
heterogeneities, as well as their typical length scale.
A clear demonstration of the heterogeneous dynamics is
obtained by tracking mobile particles at a given time. One
observes clusters of highly mobile particles as well as
clusters of particles barely moving at all [10–12]. The
typical size of these clusters is quantified by the spatial
decay of the mobility correlation function. One therefore
looks for the correlation between the displacements over a
time interval t of particles at mutual distance r. This
mobility-mobility correlation function was first introduced
in [13], as a tool to discover cooperative regions in nu-
merical simulations of glass-forming liquids. However, the
first attempts to analyze these correlation function [13]
were very limited, and thus showed no increasing correla-
tion length. It turns out that the essential ingredient to
find the dynamical correlations is not really the mobility,
but rather the fact that we are calculating a four-point

correlation function, in contrast with standard two-point
functions. The four-point density correlation

G4ðr; tÞ ¼ h�ð0; 0Þ�ð0; tÞ�ðr; 0Þ�ðr; tÞi
� h�ð0; 0Þ�ð0; tÞih�ðr; 0Þ�ðr; tÞi; (1)

was first suggested in [14] in order to look for a growing
correlation length. Yet, direct measurements of G4 turn out
to be technically demanding. Instead, it is common to study
its spatial integral, which is nothing but the realization-to-
realization fluctuations of the two-point correlation func-

tion ~CðtÞ ¼ h�ð0; 0Þ�ð0; tÞi � h�ð0; 0Þih�ð0; tÞi (spatially
averaged for each realization), or the four susceptibility

�4ðtÞ ¼
Z

G4ðr; tÞdr ¼ N½h ~CðtÞ2i � h ~CðtÞi2�: (2)

The four susceptibility was indeed shown to exhibit an
appreciable increase with the waiting time [15], which
was interpreted as a sign for an increase of the dynamical
correlation length characterizing the decay of G4ðr; tÞ. The
four-point susceptibility was later used extensively to mea-
sure dynamical heterogeneities approaching the glass tran-
sition and to imply the existence of growing correlation
length. The time dependence of �4ðtÞ was suggested to
indicate the mechanism underlying the transition [7].
Various theories lead to different relations between the

correlation length �4, characterizing the spatial decay of
G4ðr; tÞ, and �4 [16,17]. Thus, direct measurements of
dynamical correlations can play a vital role in distinguish-
ing the various theoretical approaches. In fact, it was
pointed out in [7,18] that �4 and �4 might depend differ-
ently on time. However the calculation of dynamic corre-
lations is hard especially in numerical simulations, because
very large systems are needed in order to determine �4

unambiguously. Previous measurement of dynamic corre-
lations were performed indirectly by either scaling the
binder cumulant at �4 (time at which �4ðtÞ peaks) [9] or
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fitting the low q behavior of G4ðq; tÞ [7,8]. These measure-
ments have shown moderate correlation lengths, up to 10
interparticle distances. Clearly, these do not describe very
well the behavior at a regime in which correlation lengths
(are expected to) diverge. Here we report measurements of
dynamical correlation based on the evaluation of the four-
point density correlation G4ðr; tÞ throughout the relaxation
process. Having measured G4ðr; tÞ directly, the correlation
lengths is then extracted by fitting an exponentially decay-
ing function to the long range behavior of G4ðr; tÞ.

The N3 model is a simple 2D model on a square lattice.
Particles are cross-shaped pentamers, interacting only
through hard-core exclusion which blocks up to the 3rd
nearest neighbor (see Fig. 1). The model is known to
undergo a first order solidification transition [19–21],
where density jumps from �f ’ 0:161 to �s ’ 0:191 [21]

(the closest packing density is 0.2). The behavior of this
model in the supercooled fluid regime was analyzed using
the R matrix method [22,23] based on the Mayer cluster
coefficients of N3. The analysis predicted a critical termi-
nation of the supercooled fluid phase at nontrivial density
�t ¼ 0:1717, close to the random closest packing density
of this model [24]. The validity of the Rmatrix approach in
the deeply supercooled regime could be questioned, but
extensive MC simulations revealed that the dynamic re-
laxation of the supercooled fluid becomes increasingly
slow as the density increases, diverging at �t [25]. It is
therefore plausible to relate the dynamical arrest in the N3
model to the predicted termination of the thermodynamic
equation of state predicted by the R matrix. The physical
origin of the critical termination point is yet to be under-
stood, but one attractive possibility is that it marks the
spinodal point, where the supercooled fluid loses its
(meta)stability. The N3 system is then a simple and con-
venient model-system for studies of slow dynamics in
quenched deeply supercooled fluids.

Here we employ the advantage of the simple two dimen-
sional N3 system and study in detail the dynamic correla-
tion length near the predicted termination of the fluid

supercooled phase. Simulations of the N3 model allowed
for an easy and direct measurements of G4ðr; tÞ throughout
the whole relaxation process for a wide range of system
sizes. We performed Monte Carlo simulations of the model
following the protocol presented in [25]: simulation starts
with an infinitely fast cooling, where particles are added
whenever possible and diffuse otherwise, this process is
stopped when the desired density is reached. The system
is then left to relax diffusively at a fixed density, and
measurements are performed during this relaxation process.
Figure 2 presents the behavior exhibited at the different time
regimes. We have studied lattices of sizes up to 1200�
1200 sites in the current study (up to 2000� 2000 sites in
the past). Simulations of such large systems are crucial, as
significant finite-size effects are shown to persist to large
lattice sizes [25]. In concordance, we measure correlation
lengths as large as 120 lattice sites (50 interparticle dis-
tances). The correlation length is estimated by fitting an
exponential form to the measured G4ðr; tÞ. The only free-
dom in the fit is the spatial range upon which to fit the
exponential form: in all of the �4 measurements below we
used the range 30< r < 90, even though for cases with
large �4 the fit captures the behavior far beyond this chosen
range, as seen in Fig. 2.
The picture that emerges from these simulations is the

following: at short timesG4ðr; tÞ decays at short range, with
no exponential tail observed. However, on intermediate
times one clearly sees an exponential decay regime follow-
ing the short-range decrease. At later times, (later then �4),

FIG. 1. Random packing of the N3 model as produced by the
cooling protocol, density set to 0.17. The few particles that are
movable at the end of the cooling phase are marked by a gray
spot at their center.
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FIG. 2 (color online). Measurements of G4ðr; tÞ during dy-
namical relaxation of the N3 model, at density � ¼ 0:1713.
Data are binned (bins width 1 lattice constant), the average
and maximum values in each bin are presented. (a) t ¼ 5000
(b) t ¼ 10 000, a clear exponentially regime emerges.
(c) t ¼ 20 000, the correlation length further increases.
(d) t ¼ 30 000, further increase of the correlation length. Note
that the amplitude of the correlation function G4ðr; tÞ is smaller
in this case, leading to an overall smaller integral �4 as com-
pared to the time presented in (c). The exponential fit to the
averaged data (straight line) may be used to extrapolate G4ðr; tÞ
to larger distances (see text).
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one again sees only the short-range behavior. Figure 3
presents the time dependence of the dynamic correlation
length �4, for various densities of the N3 model. We find
that the correlation length �4ðtÞ grows with time, approach-
ing a plateau. It is not possible to measure �4 at very long
times, where G4ðr; tÞ is very small beyond the short-range
regime, and it is not at all clear whether there is an expo-
nential regime in these long times. However, for as long as
we are able to measure �4 it does not seem to increase or
decrease. Furthermore, the time dependence of �4ðtÞ is
determined by the short-range correlation (which dictates
the amplitude of the long range behavior) as well as the
correlation length itself. Because of the dependence of both
�4 and the amplitude ofG4ðr; tÞ on the time t, the time �4 at
which�4 peaks differs from the time at which �4 reaches its
maximal value. These findings highlights the nontrivial
relation between �4 and �4, and the need to study both
quantities separately. In addition, our measurements show
that the dynamically correlated regions have compact (and
not fractal) form in all times measured.

Looking at the microscopic structure of the relaxation
dynamics in the N3 model, one observes a clear heteroge-
neous picture similar to that seen, for example, in the kineti-
cally constrained triangular lattice gas models (1)-TLG and
(2)-TLG [26]. The dynamics can be described by a growth
of mobile regions in the system, as seen in Fig. 4, until all of
the particles moved when CðtÞ ¼ 0. In course of time, the
mobile regions, or clusters, grow, but there is no creation of
new clusters. The measured correlation length fits this
observed dynamics. The increase in the correlation length
corresponds to the growth of clusters of mobile particles,
while in later times further cluster growth is blocked by the
neighboring clusters, resulting in a saturation of correlation
length.

As seen in Fig. 2, G4ðr; tÞ does not decay to 0 at very
long ranges. The contribution of this tail to �4, the spatial

integral over G4, does not decrease with system’s size.
These spurious infinite-range correlations are introduced
during the cooling protocol. In fact, one may study
�mðr; t ¼ 0Þ, the density of particles free to move at t ¼ 0
(end of cooling). The global density of movable particles at
time t ¼ 0 is just m ¼ h�mðr; t ¼ 0Þi, and the generalized
susceptibility for this density is given by �m ¼ V½hm2i �
hmi2�. This quantity is closely related to �4 at short times.
Indeed, one observes infinite-range contributions to the zero
time �m. This global effect is amplified in the course of
dynamics, as movable particles grow into clusters, and
affects strongly �4. It is washed out only for relatively
long times, often of order �4 and more. Obviously, these
infinite-range contributions to �4 have nothing to do with
the dynamics in general, or with the dynamical correlation
length, in particular.
Similar effects are expected in other studies, as long as

the system is not equilibrated before the measurement
starts. Such equilibration is always desired, but usually
not possible in systems prone to crystallization (e.g.
hard-spheres). Direct measurements of �4 in such cases
are prone to the effect described above. However, if one
measures G4ðr; tÞ, a correction scheme for the initial
condition is possible. Instead of calculating �4 using
N � VarðCðtÞÞ, one should extrapolate the exponentially
decaying region of G4ðr; tÞ to infinite r, and find �4 by
integratingG4ðr; tÞ exactly over the short-range and adding
the contribution of the integral over the exponential regime
for larger distances.
The results for the dynamic �4 are presented in Fig. 5.

Peak values of �4 diverges with a power law as �t is
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FIG. 3 (color online). Time dependence of the dynamical
correlation length for several values of the density. The correla-
tion length increases with time, and then saturates for as long as
we are able to measure it. The correlation length as measured at
�4 power law diverges with critical exponent of 1.0 (inset).

FIG. 4 (color online). Displaying relaxation dynamics of N3
model, for � ¼ 0:1713. Dots represent mobile particles, the
growth of mobile regions as well as no creation of new mobile
regions with time is observed. An area of 200� 200 was chosen
out of simulated system of 1000� 1000 sites.
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approached �4;max � ð�t � �Þ�2:0. The time dependence

of �4ðtÞ underscores its dependence on the short-range
behavior of G4ðr; tÞ rather than the long exponential tail.
The short-range correlation determines the coefficient
multiplying the exponential decay, and has stronger time
dependence then �4ðtÞ and so determines �4ðtÞ time
dependence.

The divergence of dynamical length and time scales at
�t, the termination density of the metastable fluid, suggests
a possible relation between a (kinetic) spinodal and a slow
dynamics. Such a mechanism was already suggested
for a number of models by several authors [27–30].
According to this scenario, as the system is cooled below
the kinetic spinodal the fluid becomes unstable towards
creating microscopic crystalline domains on time scales
shorter than the relaxation time. In this regime, the growth
of the microcrystallites is slower than the creation of new
ones. Thus, the system gets stuck in a poly-micro-
crystalline phase, which is indistinguishable from what
we call a glassy state [30]. Further research is required to
examine the relevance of this picture to the N3 and other
models.

In summary, we present here a direct measurement
of the dynamical correlation function G4ðr; tÞ, showing
the emergence of a growing length scale �4 across which
the dynamics is correlated. One observes a significant
increase in the correlation length, up to 120 lattice sites.
As density approaches �t, the density at which the fluid
phase of the model is predicted to terminate, the correlation
length �4 power law diverges with (�t � �). In concord-
ance, peak values of �4ðtÞ diverge, suggesting that the
slow down of relaxation processes near the termination
of the fluid branch results from a growth in the dynamical

correlations. Yet, we show that �4 by itself cannot be used
as a reliable indirect measure of �4 time dependence.
We are grateful to Ludovic Berthier for important dis-

cussions and insightful comments.
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FIG. 5 (color online). Measurements of �4ðtÞ corrected for
removal of global effects created while cooling the system.
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diverges (inset) as the termination density �t is approached.
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with exponent of 0.8.
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