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We propose that with ultracold Fermi gases one can realize a spin-asymmetric Josephson effect in

which the two spin components of a Cooper pair are driven asymmetrically—corresponding to driving a

Josephson junction of two superconductors with different voltages V" and V# for spin up and down

electrons, respectively. We predict that the spin up and down components oscillate at the same frequency

but with different amplitudes. Furthermore our results reveal that the standard interpretation of the

Josephson supercurrent in terms of coherent bosonic pair tunneling is insufficient. We provide an intuitive

interpretation of the Josephson supercurrent as interference in Rabi oscillations of pairs and single

particles, the latter causing the asymmetry.
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When a coherent many-body system is partitioned into
two subsystems, the dynamics of macroscopic observables
such as the relative number of particles and relative phase
is called the Josephson effect [1,2]. The external Josephson
effect has been realized in superconducting junctions [3,4],
superfluid 3He [5] and 4He [6], and in Bose-Einstein con-
densates (BEC) of alkali atomic gases in double-well traps
[7,8]. The internal Josephson effect has been demonstrated
in 3He [9] and is expected to occur in spin BECs [2,10–12].
Also in the context of ultracold Fermi gases [13] the
possibility of the Josephson effect has recently received
theoretical interest [14–17]. In this letter we show that
partitioning a system of Cooper-paired fermions so that
the two components of the pair experience different poten-
tials (this is what we mean by ‘‘spin-asymmetric’’ here)
leads to a novel effect, namely, different-amplitude but
phase-synchronized number-oscillations of the compo-
nents. Although the microscopic description of the
Josephson effect is based on single particle tunneling, the
standard interpretation of the Josephson supercurrent is
given in terms of coherent tunneling of bosons or Cooper
pairs [18]. Importantly, our results show that such an
interpretation is insufficient. We provide a clear, intuitive
explanation of the predicted spin-asymmetric Josephson
effect and a new understanding of the Josephson super-
current as a process where not only pairs but also the spin-
components separately contribute via interference.

We propose that the spin-asymmetric Josephson effect
can be realized in a four-component Fermi gas in which
two superfluids are coupled by radio-frequency (rf) fields
[Fig. 1(a)], as in rf spectroscopy [19]. The setup is moti-
vated by the recent realization of three-component Fermi
gases [20]. Another possible, perhaps experimentally sim-
pler, realization is a superfluid two-component ultracold
Fermi gas [Fig. 1(b)] in a (spin) component-dependent
double-well potential. The theoretical descriptions of the
systems of Figs. 1(a) and 1(b) are identical (in this Letter

we use the notation of the former). We also suggest that the
spin-asymmetric effect can be realized in a S-I-S junction
of two materials with different Zeeman splittings [21].
The setup of Fig. 1(a) corresponds to a many-body

Hamiltonian H ¼ H0 þHrf , where H0 ¼
R
dr
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Here, c iðrÞ and c y

i ðrÞ are the fermionic field operators
for the internal state i and �i is the chemical potential (we
assume �i � �), and Uij give the interaction strengths in
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FIG. 1 (color online). Spin-asymmetric Josephson effect setup.
(a) The four-component Fermi gas. Particles in internal (e.g.
hyperfine) states j1i � j4i coexist spatially. The components j1i
and j2i as well as j3i and j4i form Cooper pairs due to the
interactions U12 and U34. The cross-interactions U13, U14, U23,
U24 are assumed weak, thus not leading to pairing. The tunneling
is driven by applying rf fields to couple the states. The Rabi
couplings�ij correspond to the weak tunneling link between the

two superconductors in a Josephson junction. The detunings
�ij ¼ �ij �!ij play the role of the voltage, eV. Remarkably,

one can choose �13 � �24 and create the analogue of a spin-
dependent voltage in a Josephson junction. The states j1i and j3i
(j2i and j4i) must be states of the same atom to allow the rf
coupling, but j1i and j2i can be e.g. 6Li and 40K. (b) Cooper pairs
of a two-component Fermi gas in a spin-dependent double-well
potential. This setup is conceptually equivalent to the system of
(a) albeit the absence of cross interactions.
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the s-wave contact potential approximation. We assume
that U12 and U34 lead to pairing and set @ ¼ 1.

In the rotating wave approximation [22] the tunneling
coupling between states jii and jji is given by the Rabi
frequency �ij with the detuning �ij ¼ �ij �!ij. Here,

�ij is the frequency of the field and !ij is the resonance

frequency of the hyperfine transition. The effect of the
electromagnetic field on the system is then described

by Hrf ¼ �13

2

R
dr½c y

1 ðrÞc 1ðrÞ�c y
3 ðrÞc 3ðrÞ�þ�24

2 �R
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2 ðrÞc 4ðrÞþH:c: In analogy to the usual

Josephson junctions, the states j1i and j2i correspond to
spin up and down electrons in the left-side superconductor,
j3i and j4i on the right. The detunings �13 and �24 play the
role of the voltage.

The essential new feature in atomic gases is the possi-
bility to set �13 � �24, which in the case of the Josephson
junction corresponds to spin-dependent voltages. Note
that this is different from superconductor-ferromagnet-
superconductor (S-F-S) structures [23] in which the spin-
active barrier coupling plays the crucial role. Though in our
case also the couplings could be different, only the spin-
asymmetric potential is relevant for our predictions.
Moreover, one might consider ferromagnetic superconduc-
tors [24] in a junction as a related system but those mate-
rials have most likely an exotic ground state which does not
fit our description.

We now determine the transition rates (i.e., particle
currents) between states j1i and j3i, I13ðtÞ � h _N1i, and
between states j2i and j4i, I24ðtÞ � h _N2i. We calculate a
self-consistent linear response with respect to Hrf (valid
when the number of transferred particles is small compared
to the total particle number) for the system of Fig. 1 with
the aid of the Kubo formula and the Kadanoff-Baym
method [25]. We obtain the currents

I13ðtÞ ¼ IS13 þ IC13 sin½ð�13 þ �24Þtþ ’�;
I24ðtÞ ¼ IS24 þ IC24 sin½ð�13 þ �24Þtþ ’�: (1)

Here, IS is the standard single particle (quasiparticle)
current that occurs only for detunings �ij above the exci-

tation gap 2�. The initial phase of the Josephson current is
’. The critical Josephson currents IC become, in a spatially
homogeneous case and in the BCS description,

IC13 ¼ 2j�13�24�F ðp ¼ 0; �24 þ i�þÞj; (2)

IC24 ¼ 2j�13�24�F ðp ¼ 0; �13 þ i�þÞj; (3)

where �F ðp; !Þ ¼ 1
�V

P
q;�F 12ðq; �ÞF �

34ðq� p; ��!Þ.
Here, V is the volume and � ¼ 1=ðkBTÞ (T is temperature
and kB the Boltzmann constant).F 12 ¼ F �

21 (F 34 ¼ F �
43)

is the anomalous mean field Matsubara Green’s function
for the superfluid of components j1i and j2i (j3i and j4i).
For details see supplementary material [26].

The striking result is that the critical current IC13 in

Eq. (2) depends only on �24, and similarly IC24 in Eq. (3)
only on �13 (this is not limited to the BCS regime; it
remains true whenever pairing correlations exist). By
choosing different detunings �13 and �24, one can observe
a spin-asymmetric Josephson effect in which the currents
in the two tunneling channels are different in amplitude,
but oscillate at the same frequency. Moreover, the results
predict a tunable dc Josephson effect: by choosing the
detunings so that �13 þ �24 ¼ 0, the phase factor in
Eq. (1) is constant but the critical current can still be tuned.
The conclusions hold for experimentally realistic parame-
ters and also if cross interactions [see Fig. 1(a)] and finite
temperature are included into our analysis, as shown in the
supplementary material [26]. For typical parameters and
taking, e.g., �13=EF ¼ 0:4 and �24=EF ¼ 0:5, with EF the
Fermi energy, one obtains a considerable asymmetry of
IC13=I

C
24 ¼ 1:14; see [26] for details. By performing the self-

consistent calculation we have removed the ambiguity of
whether our previous suggestion of the critical current
asymmetry [14] was due to a simple linear response ap-
proach following the Ambegaokar-Baratoff treatment [27].
Our results (1)–(3) are in obvious contradiction with the

standard interpretation of the Josephson supercurrent in
terms of coherent pair tunneling excluding any difference
in the Josephson currents of different spin components. In
what follows we provide an explanation for the spin-
asymmetric Josephson effect which not only resolves this
paradox but also opens up a new point of view to the
conventional Josephson effect. Let us begin by writing
down the initial state of the two superfluids as a product
state of two BCS states: j�i ¼ jBCSi12 � jBCSi34 ¼Q

kðukj0ik þ vkj12ikÞ
Q

k0 ðuk0 j0ik0 þ vk0 j34ik0 Þ, where

jijik ¼ cyk;ic
y
�k;jj0ik. Next, we single out one Cooper pair

from each superfluid. Since the rf coupling between 1–3
and 2–4 conserves momentum we focus on states with k ¼
k0 (the momentum conservation can be relaxed and our
conclusions still hold):

ðukj0ik þ vkj12ikÞðukj0ik þ vkj34ikÞ
¼ u2kj0ikj0ik þ v2

kj12ikj34ik þ ukvkj12ikj0ik
þ ukvkj0ikj34ik: (4)

The empty state j0ij0i cannot contribute to the current
and neither can j12ij34i since it is Pauli blocked. There-
fore, the Josephson physics arises from the ukvkj12ij0i þ
ukvkj0ij34i superposition.
We then ask whether the essential features of our results

can be explained by considering the dynamics of a single
Cooper pair, initially in the above superposition state char-
acteristic for the BCS state with a macroscopic phase.
In addition to the paired states j12ij0i � j12i and
j0ij34i � j34i, the states j1ij4i � j14i and j2ij3i � j23i
are required to have a closed subsystem with respect to the
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tunneling coupling; see Fig. 2. These broken pair states are
analogous to single particle excitations within the BCS
formalism.

We now solve the time evolution of this system pertur-
batively in the couplings�ij. We consider an initial state in

the general superposition form �Ij12i þ �IIj34i as sug-
gested by Eq. (4). The total current becomes

h�ðtÞj _N1j�ðtÞi ¼ j�Ij2h�IðtÞj _N1j�IðtÞi
þ j�IIj2h�IIðtÞj _N1j�IIðtÞi
þ �I�

�
IIh�IIðtÞj _N1j�IðtÞi

þ ��
I�IIh�IðtÞj _N1j�IIðtÞi; (5)

where j�IðtÞi ¼ expð�iHtÞj12i and j�IIðtÞi ¼
expð�iHtÞj34i are calculated to second order in �ij. For

details and for a complementary discussion in terms of
exact numerical eigenstates (dressed states) see [26]. Here
the first two terms contain only single particle Rabi pro-
cesses, which correspond to the standard single particle
(quasiparticle) currents in a Josephson junction, ISij in

Eq. (1). Only the last two terms in Eq. (5), with �I�
�
II �j�I�IIjei’, contribute to the Josephson current. Thus, the

Josephson effect originates from the interference part of
the Rabi oscillations in the j12i, j34i, j14i, j23i state space.

Isolating the terms oscillating at the Josephson fre-
quency in h�ðtÞj _N1j�ðtÞi, we get the Josephson current

IJ13 ¼ IC13ð�24Þ sin½ð�13 þ �24Þtþ ’�;
IC13ð�24Þ ¼ 2�13�24j�I�IIj

�
1

Uþ �24

þ 1

U� �24

�
:

(6)

Hereby, we obtain the same qualitative result as our linear
response calculation gave in Eq. (1): the amplitude of IJ13
depends only on the detuning �24. Now we can identify the
source of the dependence of IC13 on �24. The current IJ13
derives from the population of species j1i, i.e., both the

population of state j12i and j14i. The result of Eq. (6) is the
sum of these two contributions.
The contribution from state j12i is the result of

tunneling between the paired states j12i and j34i, via the
intermediate state j14i (or j23i) as shown in Fig. 3(a). The
term is symmetric in �13 and �24 and proportional to
Mpair ¼ 1

Uþ�13
þ 1

Uþ�24
. The contribution is of second order

because it originates from a zeroth order and a second
order process: the population due to pair tunneling from
j34i to j12i (second order) is indistinguishable from the
initial (zeroth order) population in state j12i. Pair tunneling
contributions that do not originate from interference also
exist but they are of fourth order in �.
The contribution to IC13 from state j14i arises from

interference of broken pairs (single particles) as depicted
in Fig. 3(b). This contribution is responsible for the asym-
metry as it is proportional to Msingle ¼ 1

U��24
� 1

Uþ�13
.

Physically, this term arises because we cannot distinguish
between broken pairs from the states j12i and j34i. The two
paths leading to the state j14i are not symmetric with
respect to �13 and �24; see Figs. 2 and 3. This gives
important new insight also to the Josephson effect in
general: also single particle interferences contribute to
the Josephson current ICij sinð�13 þ �24Þ of Eq. (1).
In the standard symmetric case �13 ¼ �24 � �, we have

Mpair ¼ 2=ðUþ �Þ andMsingle ¼ 2�=ðU2 � �2Þ. At the dc
Josephson limit, � ! 0, the pair transfer Mpair dominates,

which is intuitively appealing. Closer to the Riedel peak
the excited state (single particle) interference Msingle

becomes equally important. To illustrate further, in a typi-
cal Al=AlOx=Al junction at the voltage of 0.015 mV the
single particle interference accounts for 1.7% of the AC
Josephson current. Note that our ‘‘single particle interfer-
ence term’’ is not the cosine-term (also called ‘‘quasipar-
ticle interference term’’ [28]) of the Josephson effect. The
cosine-term involves real single particle transitions and
exists only for voltages above 2� at zero temperature. In
contrast, our single particle interference term is inherent
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FIG. 3 (color online). Interference processes leading to the
Josephson supercurrent. The initial state is j�i ¼ ðj12i þ
j34iÞ= ffiffiffi

2
p

. (a) The second order transition from j34i through
j14i to j12i creates an interference with the initial (zeroth order)
population in state j12i. The resulting contribution is of the order
�13�24. Also the same process via the state j23i contributes.
(b) The first order transitions to the excited state j14i from j12i
and j34i create an interference proportional to �13�24.
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in the supercurrent and corresponds to virtual transitions.
Similarly, our findings are different from various combined
effects of single particle currents and supercurrents in
small Josephson junctions [29], where again the single
particle transitions are real, not virtual. Note also that we
do not consider any interactions between the Cooper pairs
(analogue of charging effects) nor the effect of the
environment.

We emphasize the interference nature of the Josephson
effect: it requires lack of which-way information on the
tunneling path of the particle. Above, the superposition
ukvkðj12ij0i þ j0ij34iÞ was due to the uncertainty of the
particle number in the BCS state. It is interesting to
contrast this with the number-projected BCS state [30]
or the Fock state [31], j�iNcons ¼ ðukvk0 j0ikj12ik0 þ
uk0vkj12ikj0ik0 Þðukvk0 j0ikj34ik0 þ uk0vkj0ik0 j34ikÞ (for two
k states.) Here the part relevant for Josephson physics
would be ukvk0uk0vkj12ik0 j34ik þ ukvk0uk0vkj12ikj34ik0 .
Now, the entanglement of j34ik0 with j12ik allows to de-
termine, whether a particle in state j1i belongs to an initial
1–2 pair or to a tunnelled 3–4 pair. The indistinguishability
is lost and there is no Josephson effect. Note that the
system of Fig. 1(a) should be cooled with the rf couplings
on to realize the necessary uncertainty in particle number.
One can also ask whether, in the case of the separated 1–2
and 3–4 condensates (Fock states), the measurement pro-
cess itself is sufficient to generate the relative particle
number uncertainty, in analogy to the famous problem of
interference between two BECs [32].

Importantly, based on the picture of interfering Rabi
processes, one would anticipate corrections from the cou-
pling strength �ij to the Josephson frequency �13 þ �24

given by linear response. We have observed such a correc-
tion in the numerical simulations, see supplementary ma-
terial [26]. We expect this correction to vanish in the
thermodynamic limit, but it could be experimentally tested
in ultracold gases and in superconducting grains.

In summary, we have predicted a spin-asymmetric
Josephson effect which could be observed in ultracold
Fermi gases and solid state systems and is likely to be
relevant for spintronics. We provide a microscopic descrip-
tion of the Josephson effect as interference in Rabi oscil-
lations of pairs and single particles, where the latter cause
the predicted asymmetry. In particular, our finding that the
interference part of single particle currents contributes to
the Josephson supercurrent, in addition to the interference
in pair tunneling, is fundamental. The single particle inter-
ference contribution is present already in the standard
(symmetric) case, and becomes manifest and experimen-
tally verifiable in the asymmetric one.
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