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Sufficiently thin elastic sheets wrinkle when they are in contact with a small adhesive counterbody.

Despite significant progress on the dynamics of wrinkle formation and morphology, little is known about

how wrinkles impede the relative sliding motion of the counterbody. Using molecular dynamics we

demonstrate that instabilities are likely to occur during sliding when the wrinkle pattern has asymmetries

not present in the counterbody. The instabilities then cause Coulomb’s friction law. The behavior can be

rationalized in terms of simple models for multistable elastic manifolds.
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Thin elastic sheets wrinkle, similar to the way rods
buckle, whenever a compressive stress acting on them
exceeds a critical value [1–4]. Wrinkles occur in sheets
whose thickness is much smaller than their in-plane di-
mensions, be it in a system as large as a tectonic plate or in
a few-nanometers-thick, cross-linked elastomer resting on
a soft foundation. The origin of the wrinkle-inducing stress
does not necessarily have to be mechanical (pinched skin)
but can also be chemical in nature (aging skin). Wrinkling
plays an increasingly important role in a variety of tech-
nologies, for instance, in the search for new ways to pattern
surfaces for optical [5] and electronic applications [4,6] as
well as for material characterization [3,4]. Recent work
was particularly focused on the dynamics of wrinkle for-
mation [7–9] and the control of wrinkle patterns [10–12].
Nevertheless, little is known about the dynamic response of
wrinkles to time-dependent stresses.

In their classical paper on the origin of wrinkles in
biological systems, Harris, Wild, and Stopak [13] argued
that traction forces between tissue cells and thin sheets of
chemically inert silicone rubber cause wrinkles in the
rubber and not the other way around. Their experiments
dismissed the previously held belief that the formation of
wrinkles requires protein networks to become dehydrated.
Today, it is well established that neither dehydration nor
strong local adhesions are needed for wrinkles to occur in
thin elastic sheets, as evidenced most clearly by wrinkles
that water drops induce in thin, freely floating elastomeric
films [14]. Likewise, the presence of friction—as observed
for the much-investigated keratocytes on silicon rubber
[15]—may not require local adhesions either.

Wrinkle-related friction studies avoiding local adhe-
sions have so far been performed on soft elastomers, which
had been molded such that their shapes resembled those of
originally flat, unmolded elastomers wrinkling in response
to a static compression [16]. These experiments produced
the insight that the structured surfaces had lower friction
than unstructured ones. Yet, they do not answer the ques-
tion of whether externally driven wrinkles will result in

hysteretic wrinkle dynamics, when wrinkles are not frozen
in. Hysteresis, however, entails the loss of energy—or
friction. Depending on the nature of the instabilities creat-
ing the hysteresis, a different rate or velocity dependence
of friction can be found [17]. Any quasidiscontinuous
dynamics should induce Coulomb’s law of friction, i.e., a
weak velocity dependence.
In this Letter, we will mainly be concerned with the

question of whether the velocity dependence of friction
changes qualitatively at the point where the thickness of
the manifold becomes sufficiently small so that the adhe-
sive counterbody induces wrinkles. For this purpose, we
will use molecular dynamics, which has been established
to reproduce both experiments and scaling hypotheses on
the buckling and crumpling of membranes [18].
Our model consists of a particle adsorbed on a square,

elastic manifold, which is composed of discrete grid points
(‘‘atoms’’) that are connected with elastic springs. The
adsorbed particle has the quasispherical topology of a
C60 molecule, unless mentioned otherwise. All units in
this Letter are expressed in terms of the mass of a manifold
atom, the stiffness of springs connecting two in-plane
adjacent manifold atoms, and the equilibrium spacing
between them. The effective thickness t of the membrane
is controlled by multiplying the stiffness of springs that do
not lie completely within the xy plane with a scaling factor
t. Simulations are conducted with a self-written molecular
dynamics code. More details can be found in Ref. [19].
We would first like to demonstrate that our model pro-

duces the proper response of the manifold to an adhesive
counterbody as a function of its thickness; see Fig. 1. At
large thickness, grooves occur. They are elastic deforma-
tions in response to the periodic boundary conditions and
thus exhibit the fourfold symmetry of a square. As these
grooves can be interpreted as simple field lines connecting
adjacent adsorbed particles, we classify this regime as
unwrinkled. Around t ¼ 1 ‘‘real’’ wrinkles start occurring,
i.e., patterns that deviate from trivial symmetry. When
the manifold becomes thinner, the number of wrinkles
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increases and their depth decreases, conforming to the
known properties of wrinkles [4]. In addition, wrinkles
are starting to be no longer symmetrically equivalent for
thicknesses well below unity, e.g., Fig. 1(c). The movie
wrinkling3.mpg presented in Ref. [19] shows the deposi-
tion of a particle onto the substrate and the subsequent
wrinkle formation dynamics.

Configurations obtained during sliding differ from those
where no external forces act on the adsorbed particle. This
claim is substantiated in Fig. 1(d), which depicts the sys-
tem in which an adsorbed particle had been slid by a few
lattice constants. This configuration lacks the inversion
symmetry about the plane normal to the sliding direction.
Nonsliding systems always assume inversion symmetry
after thermal averaging. The way in which symmetry is
broken in Fig. 1(d) resembles that of keratocytes moving
on highly compliant silicon rubber; see, for example,
Fig. 6(a) in Ref. [15]. Specifically, more wrinkles are found
behind the moving particle than in front of it.

As is the case for any finite adsorbed (stable) particle,
there exists a well-defined linear response of the drag

velocity v to an external driving force F in the limit of
small F, i.e., v ¼ F=ðm�Þ, where m is the mass of the
adsorbed particle and � is the drag coefficient or the
inverse slip time [20]. A question that we are interested
in is whether there is a change in � as wrinkles start to
form. As discussed in more detail in Ref. [19], drag co-
efficients can be determined in thermal equilibrium either
through measurements of the particle’s thermal diffusion
constant or, alternatively, by acquiring and integrating over
the time autocorrelation function of the force (FACF),
hFxð�ÞFxð0Þi, where Fxð�Þ is the force at time � acting
between the manifold and particle. In Fig. 2, we report our
results for the drag coefficient.
In the unwrinkled regime, the FACF- and diffusion-

constant-based methods both produce similar estimates
for �. This no longer holds for thicknesses t < 1, where
wrinkles occur in addition to those connecting an adsorbed
particle with its closest images. There the employed 107

time steps no longer suffice to measure meaningful diffu-
sion constants. The reason is that the adsorbed particle,
which is kept at a thermal energy of T ¼ 10�4, is pinned—
or at best subdiffusive—within the given time window.
From such simulations, only upper bounds for the diffusion
constant can be obtained. The resulting lower bounds for �
still exceed the domain chosen for Fig. 2. Since the parti-
cles appear pinned at t < 1, the values of � as obtained by
the FACF can be interpreted as an (instantaneous) damping
that the adsorbed particle experiences while the system is
arrested in one basin of the potential energy surface. This
instantaneous damping shows a second quasicontinuous
change near a critical value of t � 0:4 and keeps increasing
as the thickness decreases. This second transition coincides
with another qualitative morphological change during
which wrinkles become symmetrically distinct; i.e., their
widths and lengths no longer take essentially unique values
for a given system.
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FIG. 2 (color online). Drag coefficient � of the adsorbed
particle as determined by (a) integration of the force autocorre-
lation function (circles) and (b) measurement of the diffusion
constant (stars). For t < 2, only upper bounds in the diffusion
constants and thus lower bounds for � could be determined. The
latter lie outside of the shown domain, as indicated by the arrow.

FIG. 1 (color online). Top view on the elastic manifold for
various thicknesses t: (a) 100, (b) 1, (c) 0.1, (d),(e) 0.01, and
(f) 10�3. In all graphs, patterns are shown after the particle is
deposited, except in (d), where the adsorbed particle has been
slid by a few lattice constants to the right with a velocity of
0:256� 10�3 in reduced units.
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The observed pinning of an adsorbed particle at small
thicknesses may appear counterintuitive if one considers
the elastic manifold to be continuous. However, the dis-
creteness of the manifold breaks its perfect translational
invariance, thereby allowing (quasistatic) shear forces to be
exerted. A similar phenomenon is known from the spread-
ing of liquid droplets on surfaces, where heterogeneities
can pin contact lines and induce contact angle hysteresis.
This is why raindrops do not necessarily run down a
seemingly flat, inclined glass surface [21].

Pinning implies static friction and in most cases also
Coulomb friction once sliding has been initiated. In our
analysis, we focused on kinetic friction, because static
friction (that is, the first stiction peak) turned out to be
undesirably sensitive to the initial conditions. Conversely,
kinetic friction had substantially less history dependence
once the particles had been slid a few lattice constants. We
calculated kinetic friction as a function of sliding velocity
for two thicknesses (t ¼ 10�3 and t ¼ 10) (see the inset in
Fig. 3) and as a function of thickness for a fixed relative
center of mass velocity of v ¼ 0:256� 10�3 (see the main
part of Fig. 3). In all these simulations, we reduced the
temperature by a factor of 10 as compared to the simula-
tions in thermal equilibrium, so that even those instabilities
could be captured that only involved small energies.

The extremely weak velocity dependence of kinetic
friction for the thin substrate is indicative of Coulomb
friction and thus consistent with the observation that an
undriven particle was pinned. The large difference in
kinetic friction, almost 3 orders of magnitude, between
the t ¼ 10�3 and the t ¼ 10 thick elastic manifolds implies
that the kinetic friction with the thinner manifold cannot
simply be related to local adhesions. The small but seem-
ingly finite friction in the limit of small velocities for the
thick sheet is due to local instabilities that do not signifi-
cantly affect the wrinkle morphology. The linear response
regime could not be reached in the calculations shown in

Fig. 3, because very small temperatures had been chosen in
these runs.
The nonequilibrium simulations also show three thick-

ness regimes that roughly coincide with those obtained in
the thermal-noise calculations. Dissipation is again largest
for the thinnest manifolds, this time by orders of magni-
tude. However, the intermediate regime shows less kinetic
friction than the large thickness regime, which differs from
the trends in the calculations without external driving. The
reason for the different behaviors lies in the different
morphologies that the adsorbed C60 shaped particle can
induce in the substrate. Specifically, the wrinkles in the
large t regime had always fourfold symmetry, while for
intermediate values of t, the symmetry was eightfold in the
thermal-noise simulation, which quickly converted to
threefold symmetry once sliding had begun. Preliminary
runs of particles with different shapes, i.e., one monomer
with large Lennard-Jones radius and one flat heptagon,
have not shown any sign of an intermediate regime.
The arguably most interesting effect in Fig. 3 is the

increase in the friction force by a factor of more than 100
as the thickness is decreased from t ¼ 0:7 to t ¼ 0:5. To
elucidate the origin of this behavior, lateral forces are
shown as a function of slid distance �x in Fig. 4(a). The
lateral force of the thicker substrate has various instances
in time, for example, at a slid distance of�x � 5:75, where
it changes rather quickly with �x. Yet, once steady state
has been reached (after going through one single ‘‘stiction
peak’’ at the early stages of sliding after deposition—not
shown here), the lateral force apparently evolves rather
smoothly in time for t ¼ 0:7. This is why dissipation is
small. Conversely, the slightly thinner sheet produces a
distinct sawtooth time dependence, which is indicative of
instabilities or stick-slip type motion within the system
leading to large dissipation. For even thinner substrates,
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FIG. 3 (color online). Main figure: Kinetic friction obtained at
T ¼ 10�5 for different thicknesses. Inset: Kinetic friction as a
function of the sliding velocity v for two different thicknesses:
t ¼ 10�3 (wrinkled regime) and t ¼ 10 (unwrinkled). Lines are
linear fits to the data.
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FIG. 4 (color online). (a) Instantaneous force Fx as a function
of the slid distance �x for two different thicknesses. Arrows
mark points where the thicker substrate is close to showing slips.
(b) Height of the manifold at a distance twice the diameter of the
adsorbed particle for the same thicknesses.
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this stick-slip motion becomes erratic and is no longer
periodic with the manifold lattice (see also the movie
sliding.mpg on stick-slip motion in Ref. [19]).

The discontinuous increase in friction when the mani-
fold thickness decreases from t ¼ 0:7 to t ¼ 0:5 coincides
with a morphological change of the manifold. The t ¼ 0:7
has three highly symmetric wrinkles, shown in Fig. 4(b),
while the slightly thinner sheet has one more wrinkle and,
probably more important, wrinkles now are inequivalent.
This asymmetry of the pattern is not an immediate con-
sequence of the shape of the adsorbed body. We made the
same observations in the two sets of test runs in which
either a large Lennard-Jones monomer or a flat heptagon
had been used as adsorbed particles. The asymmetry of the
wrinkle pattern is significant because it implies that there
are several mechanically (meta)stable configurations that
cannot be reached from one another without changing the
energy of the system. For example, making the t ¼ 0:5
wrinkles at ’ � 160� and 340� as deep as those at ’ �
70� and 250� and vice versa will require the system to pass
over an energy barrier.

The multistability of discrete, elastic systems has long
been recognized as a possible origin of energy-dissipating
instabilities leading to Coulomb’s friction law [22,23]:
Once a configuration becomes unstable, the degrees of
freedom quickly advance to the vicinity of another energy
minimum. Multistability, however, does not arise auto-
matically in discrete elastic systems. Whether instabilities
occur can depend on details such as the ratio of atomic
spacings in the adsorbed layer and substrate as well as on
other details of the interaction. These and related insights
have been best formalized in the context of the Frenkel-
Kontorova model [24].

It is certainly not surprising that thinner sheets exhibit a
higher propensity for instabilities to occur than thick sheets
due to their higher compliance. Other studies show the
same trends, be it layers of graphite lubricating nanoscale
objects [25], the buckling hysteresis in multiwalled carbon
nanotubes under cyclic compression [26], the snap transi-
tions in adhesion between a shell and a substrate (which
do not require asymmetry in the wrinkle pattern) [27], or
scaling theories of friction of elastic manifolds as a func-
tion of their physical dimension [28]. In this sense there is
no new wrinkle in the theory of friction on a fundamental
level but a matured understanding of the mechanisms that
can lead to it.
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[18] J. A. Åström, J. Timonen, and M. Karttunen, Phys. Rev.

Lett. 93, 244301 (2004).
[19] See supplementary material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.105.224301 for [give

brief description].
[20] H. Risken, The Fokker Planck Equation (Springer,

Heidelberg, 1984).
[21] L. Leger and J. F. Joanny, Rep. Prog. Phys. 55, 431 (1992).
[22] L. Prandtl, Z. Angew. Math. Mech. 8, 85 (1928).
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