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A number of superconducting qubits, such as the transmon or the phase qubit, have an energy level structure
with small anharmonicity. This allows for convenient access of higher excited states with similar frequencies.
However, special care has to be taken to avoid unwanted higher-level populations when using short control
pulses. Here we demonstrate the preparation of arbitrary three level superposition states using optimal control
techniques in a transmon. Performing dispersive readout, we extract the populations of all three levels of the
qutrit and study the coherence of its excited states. Finally we demonstrate full quantum state tomography of the
prepared qutrit states and evaluate the fidelities of a set of states, finding on average 95%.
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Spin 1/2 or equivalent two-level systems are the most
common computational primitive for quantum information
processing [1]. Using physical systems with higher dimen-
sional Hilbert spaces instead of qubits has a number of
potential advantages. They simplify quantum gates [2], can
naturally simulate physical systems with spin greater than
1/2 [3], improve security in quantum key distribution [4,5]
and show stronger violations of local realism when pre-
pared in entangled states [6,7]. Multilevel systems have
been successfully realized in photon orbital angular mo-
mentum states [8—10], energy-time entangled qutrits [11],
and polarization states of multiple photons [12], all in the
field of optics. In solid-state devices, multiple levels were
used for pump-probe readout of superconducting phase
qubits [13—15], were observed in the nonlinear scaling of
the Rabi frequency of dc SQUIDs [16-19] and were ex-
plicitly populated and used to emulate the dynamics of
single spins [3]. In solid-state devices, the experimental
demonstration of full quantum state tomography [20] of the
generated states, i.e., a full characterization of the quitrit, is
currently actively pursued by a number of groups. The
added information about higher energy levels is essential
to characterize the dynamics in the two-level qubit sub-
space. Also, the versatility of superconducting qubits is an
advantage towards studies of coherent and dissipative dy-
namics of one or more coupled multilevel systems to test
theoretical predictions beyond two-level systems.

In this work, we use a transmon-type superconducting
artificial atom with charging energy E./h = 298 =
1 MHz and maximum Josephson energy E7**/h =
38 GHz [21,22] embedded in a coplanar microwave reso-
nator of frequency w,/27 = 6.9421 = 0.0001 GHz in an
architecture known as circuit quantum electrodynamics
(QED) [23,24]. In circuit QED, the third level has already
been used, for instance, in a measurement of the Autler-
Townes doublet in a pump-probe experiment [25,26]. It has
also been crucial in the realization of the first quantum
algorithms in superconducting circuits [27] and is used in a
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number of recent quantum optical investigations, e.g., in
Ref. [28]. Also, quantum state tomography based on dis-
persive readout [23,29] of a two-qubit system has been
demonstrated [30] and used for the characterization of
entangled states [27,31]. In our realization of three level
quantum state tomography, we populate excited states us-
ing optimal control techniques [32] and read out these
states using tomography with high fidelity. We determine
all relevant system parameters and compare the data to a
quantitative model of the measurement response.

The transmon dispersively coupled to a single mode of a
resonator is well described by the linear dispersive
Hamiltonian [21,23] approximated to second order
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where the transmon transition frequency wy; = w; — @
is largely detuned from the resonator. Here, at) is the
annihilation (creation) operator for the photon field and
Xj= g?/ A;. g; denotes the coupling strength to the trans-
mon transition j < j+ 1 and A; its detuning from the
cavity frequency. We extracted g,/27 = 115+ 1 MHz
from a measurement of the vacuum Rabi mode splitting
[24]. Coupling constants g; of higher levels were explicitly
determined in time-resolved Rabi oscillation experiments,
where g; = n;g9 = /j + 1go due to the limited anharmo-
nicity of the transmon [21]. For the w;, transition we
experimentally determined 7, = 1.43 £0.04 = V2.
Using flux bias, we detune the qubitby Ay = wy — 0, =
—1.319 = 0.001 GHz from the resonator. The nonresonant
interaction with the transmon in state |j) leads to a dis-
persive shift s; = —(x; — x;-) in the cavity frequency.
Measuring the in-phase (/) and quadrature (Q) components
(aj’Q) of microwaves transmitted through the resonator
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[Fig. 1(a)] at a chosen detuning A,, = 0, — w, =
5.1 MHz of the measurement frequency w,, from w,,
allows us to extract the population of the transmon state
| /). Note that all relevant quantities in this Letter have been
determined from both 7/ and Q transmission amplitude
measurements, but in most cases only one of the data
sets is shown for clarity.

To prepare arbitrary superposition states of the lowest
three levels of the transmon we use optimal control tech-
niques in which two subsequent derivative removal by adia-
batic gate pulses [32—34] of standard deviation 3 ns and total
length 12 ns are applied to the qubit at the wq; and w;,
transitions. We extend the technique described in [32] for the
two lowest levels of the transmon to three levels using quad-
rature compensation and time-dependent phase ramps [35] to
suppress population leakage to other states and to obtain
well-defined phases.

For a first characterization of the readout of higher levels,
the transmon is prepared in one of its three lowest basis
states |j) (j = 0, 1, 2). After state preparation, a coherent
microwave tone is applied to the cavity and the state depen-
dent transmission amplitude is measured [Fig. 1(b)]. The
amplitude of the tone was adjusted to maintain the average
population of the cavity well below the critical photon
number n; = A(z)/4g0 =25 [23]. The time-dependent
transmission signals are characteristic for the prepared
qubit states and agree well with the expected transmission
calculated using Cavity-Bloch equations [29] [solid lines in
Fig. 1(b)]. We have generalized the formalism presented in
Ref. [29] to three levels to quantitatively model the disper-
sive measurement and fitted the data to this model with s;

and T/, the energy relaxation time of level j, as independent

fit parameters. From the fits in Fig. 1(b), we have extracted
the state-dependent cavity frequency shifts sq,/27 =
10.0,5.9,3.4 = 0.1 MHz, which are found to be within
0.1 MHz of the values calculated from independently
measured Hamiltonian parameters. Also, the dispersive
frequency shifts s; measured in this way agree well with
the linear dispersive model over a wide range of transmon
transition frequencies wq; [see Fig. 1(c)].

The frequency shifts can also be obtained more directly
by measuring the transmission amplitude over a wide range
of detunings A,,, when preparing the transmon in the |2)
state and observing its decay into the |0) state. Three distinct
maxima in the measured Q quadrature [Fig. 2(a)] located at
the expected frequencies shifted by an amount s, from w,
are characteristic for the measurement of the j =0, 1, 2
states of the transmon. The peaks appear successively in
time, as the transmon sequentially decays from |2) to |1) to
the ground state |0). Sequential decay is expected due to the
near harmonicity of the transmon qubit, for which only
nearest-neighbor transitions are important [21]. The Q quad-
rature calculated from Cavity-Bloch equations is in good
agreement with the measurement data and yields the energy
relaxation times T{ of the first and second excited state 7| =
800 = 50 ns and 77 = 700 = 50 ns as the only fit parame-
ters [see Fig. 2(b)]. The relaxation times are much longer
than the typical time required to prepare the state using two
consecutive 12 ns long pulses and allow for a maximum
population of 97% of the second excited state, limited by
population decay during state preparation [36]. In Fig. 2, the
relative difference between data and calculated transmission
is at most 3% at any given point indicating our ability to
prepare and measure the |2) state with high fidelity.
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FIG. 1 (color online).

time [us] wqq frequency [GHz]

(a) Calculated in-phase transmission through the resonator for transmon states j = 0, 1, 2. The dashed curve

indicates the bare resonator response. The vertical (blue) arrow indicates the detuning A,,, of the measurement tone. (b) Pulsed I
quadrature measurement responses for prepared states |0), |1), and |2). The solid lines indicate least-squares fits to a Cavity-Bloch
equation based model. (c) Measured dispersive shifts s; versus transmon transition frequency w,. The solid lines are calculated within

the linear dispersive approximation of Eq. (1).
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FIG. 2 (color online). (a) Measured Q quadrature of the reso-
nator transmission versus time and measurement detuning for a
preparation of the transmon in state |2). (b) Calculation based on
Cavity-Bloch equations.

To realize high-fidelity state tomography, arbitrary rota-
tions in the Hilbert space with well-defined phases and
amplitudes are essential. Calibration of frequency, signal
power, and relative phases has to be performed based only
on the population measurements of the qutrit states. To do
so, we notice that the weak measurement partially projects
the quantum state into one of its eigenstates |0), |1), or |2)
in each preparation and measurement sequence [23,29,30].
The average over many realizations of this sequence,
which leads to the traces in Fig. 1(b), can therefore be
described as a weighted sum over the contributions of the
different measured states. This suggests the possibility of
simultaneously extracting the populations of all three lev-
els from an averaged time-resolved measurement trace.
Formally, the projective quantum nondemolition measure-
ment gives rise to the following measurement operator,
which is diagonal in the three level basis and linear in
the population of the different states at all times:

M;(t) = a,()10)0] + &, ()I1)(1] + @ ()12)2].  (2)

Here, @;(t) are the averaged transmitted field amplitudes
for the states j sketched in Fig. 1(b). The transmitted in-
phase quadrature

(1,(0) =Tt pM ()] = poaio(2) + p1a@; (1) + pras(1), (3)

can be calculated for an arbitrary input state with density
matrix p and populations p;. Since any measured response
is a linear combination of the known pure |0), |1), and [|2)
state responses weighted by p;, the populations can be
reconstructed using an ordinary least squares linear regres-
sion analysis, which pseudoinverts Eq. (3) for each time
step t;. The reconstructed populations show larger statisti-
cal fluctuations than in the two-level case [29] due to the
pseudoinversion of the ill-conditioned matrix used to cal-
culate the p; from Eq. (3). The statistical error is influenced
by the distinguishability between the different traces [see
Fig. 1(b)] and is minimized by optimizing the measure-
ment detuning.

In contrast to full quantum state tomography (see be-
low), this method does not require additional pulses after
the state preparation. It is therefore used to find the w,
transition frequency and the pulse amplitudes needed to
generate accurate pulses for tomography. The pulse ampli-
tudes are extracted from Rabi oscillations. To assess the
precise value of w;,, we perform a Ramsey experiment
between the |1) and |2) level [see Fig. 3]. We apply a 7
pulse at w,; preparing |1) and then delay the time between
two successive 77/2 pulses applied at @, before starting
the measurement. The theoretical lines are calculated
based on a Bloch equation simulation with a dephasing
time of 7} = 500 ns between states |1) and [2).

Using quantum state tomography [20], the full density
matrix of the first three levels of a transmon can be recon-
structed. This is achieved by performing a complete set of
nine independent measurements after preparation of a
given state and calculating the density matrix based on
the measurements outcomes. Since the measurement basis
is fixed by our Hamiltonian Eq. (1), the state is rotated by
applying the following pulses prior to measurement: I,
GRG0 B 3 (@R (MR (B
(7)1 ()12, where I denotes the identity and (6); denotes
a pulse of angle 6 on the ij transition about the a axis. For
each of these unitary rotations (U;) we measure the coef-
ficients (I,) = Tr{pU,M, U,:r] by integrating the transmit-
ted in-phase quadrature in Eq. (2) over the measurement
time [30], i.e., implementing the measurement operator
M, = [¥ M,()dt. This relation is inverted to reconstruct
the density matrix p by inserting the known operators
UM, U,:r. Note that unlike in the preceding measurement
of the populations only, we now extract a single quantity,
(I), for each measured time trace. Quantum state tomog-
raphy based on the simultaneous extraction of the popula-
tions of |0), |1), and |2) could potentially reduce the
number of required measurements, but might come at the
expense of larger statistical errors as discussed above.

As an example, the preparation and measurement of the
states |W,) = 1/v2(11) = [2)) and |¥,) = 1/4/3(|0) +

i|1) — |2)) is considered. The reconstructed density matrices
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FIG. 3 (color online). Reconstructed transmon populations in a
Ramsey oscillations experiment on the 1-2 transition using a
5 MHz detuned drive field. For a given pulse delay [0) [(blue)
dots], |1) [(red) diamonds] and |2) [(green) squares] populations
are extracted from a time-resolved averaged measurement trace.
The lines are calculated using Bloch equations.
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FIG. 4 (color online). Reconstructed states |W¥,) =
1/3/2(11) = [2)) and |W,) = 1/+/3(10) + i|1) — |2)) represented
by the expectation values of the Gell-Mann matrices A;. Ay 46 =
o-io‘l}’{o’z)’{l’Z} and Ays7 = 0§0‘1}‘{0’2}’{1’2} [solid (red) bars] corre-
spond to the Pauli matrices o, and o, i.e., the coherences, in the
{10), [1)}, {10), [2)} and {|1), |2)} subspace, respectively. The di-
agonal matrices [dotted (blue) bars] A; = oéo’l} and Ag =
(o’go‘l} + 20"21‘2}) /~/3 relate to the population of the eigenstates
and A, denotes the identity. The measured values are depicted as
(colored) bars while the expected outcomes for the perfectly
prepared state are shown as (blue) outlines.

p are post-processed using a maximum likelihood estima-
tion procedure [37] and the expectation values of the Gell-
Mann matrices A; (i = 1, ..., 8) [20,38], generalizations of
the Pauli matrices to three level systems generating the
SU(3) group, are calculated. The resulting values are com-
pared to the theoretically expected pure state values of the
A’s in Fig. 4. The extracted fidelities F = (i |p|) of 97 +
2% and 92 = 2%, respectively, demonstrate the high level
of control and the good understanding of the readout of our
three level system. Preparing a set of different states [com-
prising the basis states | j) and the superposition states (| j) +
/N2, (1) + ilk)/v2, (10) + [1) +12)/+/3, (10) +
11) + i]2))/+/3 and ([0) + i[1) + i[2))/+/3, where j, k =
0, 1, 2] we measure an average fidelity of 95%, with a
minimum of 92 = 2% for the pure |2) state. Considering
relaxation during preparation and tomography only, the best
achievable fidelity for this state would be 94%. The small
remaining imperfections are likely due to residual phase
errors in the derivative removal by adiabatic gate pulses
which affect both state preparation and tomography.

We have demonstrated the preparation and tomographic
reconstruction of arbitrary three level states in a supercon-
ducting quantum circuit using efficient optimal control
pulses. Controlling and reading out higher excited states in
these systems does broaden the prospects of using such
circuits for future experiments in the domains of quantum
information science and quantum optics. Based on the meth-
ods presented in this Letter, complemented by recent im-
provements of the readout fidelity in circuit QED [39-42],
studies of interactions and correlations between several mul-
tilevel quantum systems become feasible in future
experiments.
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