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3Laboratoire de Physique Théorique de la Matière Condensée, UPMC and CNRS, 4 place Jussieu, 75005 Paris, France

(Received 24 June 2010; published 23 November 2010)

We study three same-spin-state fermions of mass M interacting with a distinguishable particle of mass

m in the unitary limit where the interaction has a zero range and an infinite s-wave scattering length. We

predict an interval of mass ratio 13:384<M=m< 13:607 where there exists a purely four-body Efimov

effect, leading to the occurrence of weakly bound tetramers without Efimov trimers.
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In a system of interacting particles, the unitary limit
corresponds to a zero-range s-wave interaction with infi-
nite scattering length [1]. In particular, this excludes any
finite energy two-body bound state. Interestingly, in the
three-body problem, the Efimov effect may take place [2],
leading to the occurrence of an infinite number of three-
body bound states, with an accumulation point in the
spectrum at zero energy. This effect occurs in a variety of
situations, the historical one being the case of three bosons,
as recently studied in a series of remarkable experiments
with cold atoms close to a Feshbach resonance [3]. It also
occurs in the 2þ 1 fermionic problem of two same-spin-
state fermions of massM interacting only with a particle of
another species of mass m, for a mass ratio � ¼ M=m
larger than �cð2; 1Þ ’ 13:607 [2].

The four-body problem with large scattering length has
recently attracted a lot of interest [4]. In this resonant
regime, the Efimov effect for four bosons was pointed
out in Ref. [5] to be washed out by the presence of
Efimov trimers. An alternative proposed in Ref. [5] and
further explored in Refs. [6,7] was to leave the unitary limit
and consider a three-body resonant regime. In this Letter,
we stick to the unitary limit and show that the 3þ 1
fermionic problem, unlike the 3þ 1 bosonic one [7], ex-
hibits a four-body Efimov effect, within an interval of mass
ratio where Efimov trimers are absent. This is obtained by
explicitly solving Schrödinger’s equation in the zero-range
model [2] thanks to the scaling invariance of the model [8].

In the zero-range model, the Hamiltonian reduces to a
noninteracting form, here in free space

H ¼ X4
i¼1

� @
2

2mi

�ri ; (1)

with m1 ¼ m2 ¼ m3 ¼ M and m4 ¼ m. The interactions
are indeed replaced by contact conditions on the wave
function, c ðr1; r2; r3; r4Þ, where ri, i ¼ 1; 2; 3, is the posi-
tion of a fermion and r4 is the position of the other species
particle: At the unitary limit, for i ¼ 1; 2; 3, there exist
functions Ai such that

c ðr1; r2; r3; r4Þ ¼ AiðRi4; ðrkÞk�i;4Þ
jri � r4j þOðjri � r4jÞ (2)

when ri tends to r4 for a fixed value of the ði; 4Þ centroid
Ri4 � ðMri þmr4Þ=ðmþMÞ different from the positions
of the remaining particles rk, k � i; 4. The wave function is
also subject to the fermionic exchange symmetry with
respect to the first three variables ri, i ¼ 1; 2; 3.
In what follows, we shall assume that there is no three-

body Efimov effect, a condition that is satisfied by imposing
M=m< �cð2; 1Þ ’ 13:607. The eigenvalue problemHc ¼
Ec with the contact conditions in Eq. (2) is then separable
in hyperspherical coordinates [8]. After having separated
out the center of mass C of the system, one introduces

the hyperradius R ¼ ½P4
i¼1 miðri �CÞ2= �m�1=2, with �m ¼

ð3MþmÞ=4 the average mass, and a set of here 8 hyper-
angles � whose expression is not required. For a center of
mass at rest, the wave function may be taken of the form

c ðr1; r2; r3; r4Þ ¼ R�7=2FðRÞfð�Þ: (3)

fð�Þ is given by the solution of a Laplacian eigenvalue
problem on the unit sphere of dimension eight, which is
nontrivial because of the contact conditions. On the con-
trary, the hyperradial part F is not directly affected by the
contact conditions, due, in particular, to their invariance by
the scaling ri ! �ri [9], and solves the effective 2D
Schrödinger equation

EFðRÞ ¼ � @
2

2 �m

�
@2R þ 1

R
@R

�
FðRÞ þ @

2s2

2 �mR2
FðRÞ: (4)

The quantity s2 is given by the hyperangular eigenvalue
problem.This problem is self-adjoint, and thus s2 belongs to
an infinite discrete set and is real, since there is no Efimov
effect on the unit sphere (R � 0), that is, here no three-body
Efimov effect.
Mathematically, Eq. (4) admits for all energies E

two linearly independent solutions, respectively, behaving
as R�s for R ! 0. If s2 > 0, one imposes FðRÞ � Rs, with
s > 0, which is correct except for accidental, nonuniversal
four-body resonances (see [10] and note [43] in [8]) recently
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found numerically [11]. Equation (4) then does not support
any bound state. On the contrary, if s2 < 0, in which casewe
set s ¼ iS, S > 0, F experiences an effective four-body
attraction, with a fall to the center leading to an unphysical
continuous spectrum of bound states [12]. To make the
model self-adjoint, one then imposes an extra contact con-
dition [12], as in the usual three-body Efimov case [13]:

FðRÞ �
R!0

Im

��
R

Rf

�
iS
�
; (5)

where the four-body parameter Rf depends on the micro-

scopic details of the true, finite-range interaction [14]. With
the extra condition Eq. (5), one then obtains from Eq. (4) an
Efimov spectrum of tetramers:

En ¼ � 2@2

�mR2
f

eð2=SÞ arg�ð1þiSÞe�2�n=S 8 n 2 Z: (6)

The whole issue is thus to determine the possible values
of the exponents s. In particular, the critical mass ratio
�cð3; 1Þ corresponds to one of the exponents being equal to
zero, the other ones remaining positive. To this end, we
calculate the zero energy four-body wave function with no
specific boundary condition on FðRÞ. Then, from Eq. (4)
with E ¼ 0, it appears that FðRÞ / R�s. The calculation is
done in momentum space, with the ansatz for the Fourier
transform of the four-body wave function:

~c ðk1;k2;k3;k4Þ ¼ �ðP4
i¼1 kiÞP

4
i¼1

@
2k2i
2mi

½Dðk2;k3Þ þDðk3;k1Þ

þDðk1;k2Þ�; (7)

where the fermionic symmetry imposes Dðk2;k1Þ ¼
�Dðk1;k2Þ and the denominator originates from the ac-
tion of H in Eq. (1) written in momentum space. When H
acts on one of the three 1=jr4 � rij singularities in Eq. (2),
this produces in the right-hand side of Schrödinger’s equa-
tion a Dirac distribution �ðr4 � riÞ multiplied by a trans-
lationally invariant function of the three fermionic
positions, which after Fourier transform gives each of the
D terms inside the square brackets of Eq. (7). Taking the
Fourier transform of Eq. (3) with FðRÞ / R�s, and using a
power-counting argument, one finds the scaling law

Dð�k1; �k2Þ ¼ ��ð�sþ7=2ÞDðk1;k2Þ: (8)

Implementing in momentum space the contact conditions,
that is, the fact that Oðjri � r4jÞ vanishes for ri ¼ r4 in
Eq. (2), gives rise to an integral equation [16]:

�
1þ2�

ð1þ�Þ2 ðk
2
1þk22Þþ

2�

ð1þ�Þ2k1 �k2

�
1=2

Dðk1;k2Þ

¼
Z d3k3

2�2

�½Dðk1;k3ÞþDðk3;k2Þ�
k21þk22þk23þ 2�

1þ�ðk1 �k2þk1 �k3þk2 �k3Þ
;

(9)

where we recall that � ¼ M=m. Equation (9) can also be
obtained as the zero-range limit of finite-rangemodels [17].
We now use rotational invariance to impose the value

l 2 N of the total angular momentum of the four-body
state and to restrict to a zero angular momentum along the
quantization axis z. Then, according to Eq. (7), the effec-
tive two-body function Dðk1;k2Þ has the same angular
momentum l. This allows us to express D in terms of

2lþ 1 unknown functions fðlÞml
of three real variables

only, the moduli k1 and k2 and the angle � 2 ½0; �� be-
tween k1 and k2, with the fermionic symmetry imposing

fðlÞml
ðk2; k1; �Þ ¼ ð�1Þlþ1fðlÞ�ml

ðk1; k2; �Þ [17]:

Dðk1;k2Þ ¼
Xl

ml¼�l

½Yml

l ð�; �Þ��eiml�=2fðlÞml
ðk1; k2; �Þ: (10)

HereYml

l ð�; �Þ are the usual spherical harmonics, and� and

� are the polar and azimuthal angles, respectively, of the
unit vector ez along z in the direct orthonormal basis
ðe1; e2?; e12Þ, with e1 ¼ k1=k1, e2 ¼ k2=k2, e2? ¼
ðe2 � e1 cos�Þ= sin�, and e12 ¼ e1 � e2= sin� [18]. The
action of parity ki ! �ki on this general ansatz is to
multiply each term of index ml in Eq. (10) by a factor
ð�1Þml , which allows decoupling of the even ml terms
(even parity) from the oddml terms (odd parity). A relevant
example, as we shall see, is the even parity channel with
l ¼ 1, where the ansatz reduces to a single term, which is
obviously the component along z of a vectorial spinor:

Dðk1;k2Þ / ez � k1 � k2

kk1 � k2k f
ð1Þ
0 ðk1; k2; �Þ: (11)

The last step is to use the scaling invariance of D [see
Eq. (8)], setting

fðlÞml
ðk1; k2; �Þ ¼ ðk21 þ k22Þ�ðsþ7=2Þ=2ðcoshxÞ3=2�ðlÞ

ml
ðx; uÞ;

(12)

where u ¼ cos�. The introduction of the logarithmic
change of variable x ¼ lnðk2=k1Þ is motivated by Efimov
physics, and the factor involving the hyperbolic cosine
ensures that the final integral equation involves a
Hermitian operator. The fermionic symmetry imposes

�ðlÞ
ml
ð�x; uÞ ¼ ð�1Þlþ1�ðlÞ�ml

ðx; uÞ; (13)

which allows us to restrict the unknown functions �ðlÞ
ml

to
x 	 0. Restricting to s ¼ iS, S 	 0, we finally obtain

0 ¼
�
1þ 2�

ð1þ �Þ2 þ
�u

ð1þ �Þ2 coshx
�
1=2

�ðlÞ
ml
ðx; uÞ

þ
Z
Rþ

dx0
Z 1

�1
du0

Xl
m0

l
¼�l

KðlÞ
ml;m

0
l
ðx; u; x0; u0Þ�ðlÞ

m0
l
ðx0; u0Þ:

(14)

The symmetrized kernel KðlÞ
ml;m

0
l
ðx; u; x0; u0Þ ¼P

�;�0¼�1ð��0Þlþ1KðlÞ
�ml;�

0m0
l
ð�x; u; �0x0; u0Þ is expressed in

terms of the nonsymmetrized one given by
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KðlÞ
ml;m

0
l
ðx; u; x0; u0Þ ¼ ½ð1þ �2Þ=ð1þ �02Þ�iS=2ð��0Þ3=2

½ð1þ �2Þð1þ �02Þ�1=4
Z 2�

0

d�

2�2

e�iml�=2hl; mljei�Lx=@jl; m0
lieim0

l
�0=2

1þ �2 þ �02 þ 2�
1þ� ½�uþ �0u0 þ ��0D� : (15)

Here the notation D in the denominator stands for D ¼
uu0 þ cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u02

p
, � ¼ ex, �0 ¼ ex

0
, Lx is the

angular momentum operator along x, jl; mli is of spin l and
angular momentum ml@ along z, and � stands for the
azimuthal angle of the vector k3 of Eq. (9) in the spherical
coordinates related to the basis ðe2?; e12; e1Þ [19].

We first look for the critical mass ratio for the 3þ 1
fermionic problem �cð3; 1Þ, which is the minimal value
of � such that the integral equation (14) is satisfied for
S ¼ 0. Rewriting Eq. (14) as 0 ¼ Ms½��, where Ms is a
Hermitian operator, we calculated numerically the minimal
eigenvalues of Ms¼0 as functions of the mass ratio �,
within each subspace of fixed parity and angular momen-
tum l, 0 
 l 
 6. As shown in Fig. 1, such a minimal
eigenvalue vanishes for �< 13:607 only in the even sector
of angular momentum l ¼ 1. We also unfruitfully explored
l ¼ 7; 8; 9; 10. We thus find that the four-body Efimov
effect takes place only in the even sector of l ¼ 1 and
sets in above a critical mass ratio [20]

�cð3; 1Þ ’ 13:384; (16)

quite close to the 2þ 1 critical value �cð2; 1Þ ’ 13:607.
To gain some insight on this result, we have studied

analytically an important feature of the spectrum of Ms¼0,
the lower border of its continuum. When x; x0 ! þ1,
which corresponds to having k2 � k1 in the function
Dðk1;k2Þ, both the symmetrized and nonsymmetrized
kernels reduce to the asymptotic form

KðlÞ
ml;m

0
l
ðx; u; x0; u0Þ � eiSðx�x0Þe�iml�=2eim

0
l
�0=2

Z 2�

0

d�

4�2

� hl; mljei�Lx=@jl; m0
li

coshðx� x0Þ þ �
1þ�D

: (17)

Since D is independent of x and x0, this is invariant by
translation over the x coordinates, leading to a continuous
spectrum of asymptotic plane wave eigenfunctions. In the
even sector of angular momentum l ¼ 1, we found that

�ð1Þ
0 ðx; uÞ � eikx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
gives rise to an eigenfunction in

the continuous spectrum of MiS with the real eigenvalue
�ðk� S;�Þ [21] where

�ðk;�Þ¼ cos2	þð1� ikÞsin½2	ð1þ ikÞ��c:c:

2ð1þk2Þsin22	sinðik�=2Þ : (18)

In Eq. (18) we have set for convenience sin2	 ¼ �=
ð1þ �Þ with 	 2 ½0; �=4�. For real k, this function
�ðk; �Þ has a global minimum in k ¼ 0. We expect that
�ðk ¼ 0; �Þ is the lower border of the continuous spectrum
ofMs¼0. Since �ð0; �Þ exactly vanishes for the three-body
critical mass ratio �cð2; 1Þ ’ 13:607, our asymptotic
analysis amounts to uncovering the three-body problem
as a limit k2=k1 ! þ1 of the four-body problem [22].

We tested this prediction against the numerics, plotting
in Fig. 1 the quantity�ðk ¼ 0; �Þ as a function of� (dotted
line). Except for the even sector of l ¼ 1, the minimal
numerical eigenvalues are close to �ðk ¼ 0; �Þ; the fact
that they are slightly above is due to a finite xmax truncation
effect that indeed decreases for increasing xmax (not
shown). This implies that the eigenfunctions correspond-
ing to these minimal eigenvalues are extended, that is, not
square integrable. The numerics agrees with this analysis.
In the even sector of l ¼ 1, the minimal numerical eigen-
value is clearly below �ð0; �Þ, for all values of � in Fig. 1.
This indicates that the corresponding eigenvector must be a
bound state of Ms¼0, with a square integrable eigenfunc-

tion �ð1Þ
0 ðx; uÞ. This is confirmed by the numerics, which

shows that at large x, �ð1Þ
0 ðx; uÞ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
e�
x. The ana-

lytical reasoning even predicts the link between the mini-
mal eigenvalue �min of Ms¼0 and the decay constant 
:
The plane wave eikx is analytically continuated into a
decreasing exponential if one sets k ¼ i
, so that �min ¼
�ði
; �Þ (this also holds for S > 0). Numerically, we have
successfully tested this relation for various values of�, and
we also found that Ms¼0 has no other bound state in the
even sector of l ¼ 1.
Finally, we completed our study of the four-body Efimov

effect by calculating, as a function of the mass ratio �, the
exponent s ¼ iS in the even sector of l ¼ 1, the real
quantity S being such that the operator MiS has a zero
eigenvalue. The result is shown in Fig. 2. Close to the 2þ 1
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FIG. 1 (color online). Minimal eigenvalues of the Hermitian
operators Ms¼0 in each sector of fixed parity and angular
momentum l, 0 
 l 
 6, as functions of the mass ratio � ¼
M=m. Only the curve for the even sector of l ¼ 1 crosses zero
for �< 13:607, corresponding to the occurrence of a four-body
Efimov effect in that sector. The other curves all remain above
zero. They strongly overlap and are barely distinguishable at the
scale of the figure. The dotted line is the analytical prediction
�ðk ¼ 0; �Þ for the lower border of the continuum in the
spectrum of Ms¼0. The inset is a magnification. In the numerics,
x and u were discretized with a step dx ¼ du ¼ 1=10, and x was
truncated to xmax ¼ 20.

PRL 105, 223201 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

26 NOVEMBER 2010

223201-3



critical mass ratio �cð2; 1Þ ’ 13:607, the values of jsj are
of order unity, which shall give a sizable experimental
effect [3]. Close to the 3þ 1 critical mass ratio �cð3; 1Þ,
jsj varies as ð�� �cÞ1=2 (see the dashed line) [23]. Low
values of jsj lead to extremely low Efimov tetramer ener-
gies: For an interaction of finite-range b, setting Rf � b

and n ¼ 1 in Eq. (6), we estimate the ground state Efimov

tetramer energy for jsj 
 1 as EEfim
min � �e�2�=jsj

@
2=

ð2 �mb2Þ [24]. For jsj ¼ 0:5, taking the mass of 3He for m
and a few nanometers for b gives EEfim

min =kB in the nano-

kelvin range, accessible to cold atoms. Moreover, for a
large but finite scattering length a, successive Efimov
tetramers come in for values of a in geometric progression

of ratio e�=jsj, so that too low values of jsj require unreal-
istically large values of a. Another experimental issue is
the narrowness of the mass interval. Several pairs of atomic
species have a mass ratio in the desired interval, e.g., 3He�
and 41Ca (� ’ 13:58), and with exotic species, 11B and
149Sm (� ’ 13:53) and 7Li and 95Mo (� ’ 13:53). A more
flexible solution is to start with usual atomic species having
a slightly off-mass ratio, such as 3He� and 40K (� ’ 13:25),
and to use a weak optical lattice to finely tune the effective
mass of one of the species [25].

In conclusion, in the zero-range model at unitarity, we
studied the interaction of three same-spin-state fermions of
mass M with another particle of mass m. For M=m<
13:384, no Efimov effect was found. Over the interval
13:384<M=m< 13:607, remarkably a purely four-body
Efimov effect takes place, in the sector of even parity and
angular momentum l ¼ 1, that may be observed with a
dedicated cold atom experiment. For M=m> 13:607, the
three-body Efimov effect sets in, and the zero-range model
has to be supplemented by three-body contact conditions
that break its separability. The intriguing question of
whether the Efimov tetramers then survive as resonances,
decaying in a trimer plus a free atom, is left for the future.

F. Werner is warmly thanked for discussions.
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line results from a linear fit of jsj2 as a function of � in a vicinity
of the critical value �cð3; 1Þ, jsj2fit ’ 2:23ð�� �cÞ. The vertical

dotted line indicates the 2þ 1 critical value �cð2; 1Þ.
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