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High intensity colliding laser pulses can create abundant electron-positron pair plasma [A.R. Bell and

J. G. Kirk, Phys. Rev. Lett. 101, 200403 (2008)], which can scatter the incoming electromagnetic waves.

This process can prevent one from reaching the critical field of quantum electrodynamics at which vacuum

breakdown and polarization occur. Considering the pairs are seeded by the Schwinger mechanism, it is

shown that the effects of radiation friction and the electron-positron avalanche development in vacuum

depend on the electromagnetic wave polarization. For circularly polarized colliding pulses, these effects

dominate not only the particle motion but also the evolution of the pulses. For linearly polarized pulses,

these effects are not as strong. There is an apparent analogy of these cases with circular and linear electron

accelerators to the corresponding constraining and reduced roles of synchrotron radiation losses.

DOI: 10.1103/PhysRevLett.105.220407 PACS numbers: 12.20.�m, 52.27.Ep, 52.38.Ph

Nowadays, lasers provide one of the most powerful
sources of electromagnetic (EM) radiation under labora-
tory conditions and thus inspire the fast growing area of
high field science aimed at the exploration of novel physi-
cal processes [1]. Lasers have already demonstrated the
capability to generate light with an intensity of 2�
1022 W=cm2 [2], and projects to achieve 1026 W=cm2 [3]
are underway. Further intensity growth towards and above
1023 W=cm2 will bring us to experimentally unexplored
regimes. At such intensities the laser interaction with
matter becomes strongly dissipative, due to efficient EM
energy transformation into high energy gamma rays [1,4].
These gamma photons in the laser field may produce
electron-positron pairs via the Breit-Wheeler process [5].
Then the pairs accelerated by the laser generate high
energy gamma quanta and so on [6], and thus the condi-
tions for the avalanche-type discharge are produced at the
intensity � 1025 W=cm2. The occurrence of such ‘‘show-
ers’’ was foreseen by Heisenberg and Euler [7]. In Ref. [8]
a conclusion was made that depletion of the laser energy on
the electron-positron-gamma-ray plasma (EPGP) creation
could limit attainable EMwave intensity and could prevent
us from approaching the critical quantum electrodynamics
field. This field [7,9] is also called the Schwinger
field, ES ¼ m2

ec
3=e@, corresponding to the intensity of

� 1029 W=cm2.
The particle-antiparticle pair creation by the Schwinger

field cannot be described within the framework of pertur-
bation theory, and this sheds light on the nonlinear QED
properties of the vacuum [10]. Understanding the vacuum
breakdown mechanisms is challenging for other nonlinear
quantum field theories [11] and for astrophysics [12].
Reaching this field limit has been considered as one of
the most intriguing scientific problems. Demonstration of
the processes associated with the effects of nonlinear QED,
such as vacuum polarization and vacuum electron-positron

pair production, will be one of the main challenges for
extreme high power laser physics [1,13].
In the present Letter we discuss the attainability of the

Schwinger field with high power lasers. We compare the
role of radiation dissipative effects in the motion of elec-
trons (and positrons) produced via the Schwinger effect
and show their dependence on the EM wave polarization.
Pair creation is determined by the Poincaré invariants

F ¼ ðE2 � B2Þ=2, G ¼ ðE �BÞ and requires that the first
invariant F be positive. This condition can be fulfilled in
the vicinity of the antinodes of colliding EM waves, or/and
in the configuration formed by several focused EM pulses
[14]. This EM configuration can be locally approximated
by an oscillating TM mode with poloidal electric and
toroidal magnetic fields. The magnetic field in spherical
coordinates R, �, � is given by

B ðR; �Þ ¼ e�
a0 sinð!0tÞ
ð8�RÞ1=2 Jnþ1=2ðk0RÞLl

nðcos�Þ; (1)

where a0 ¼ eE0=mec!0, k0 ¼ !0=c, and J�ðxÞ and Ll
nðxÞ

are the Bessel function and associated Legendre polyno-
mials. The electric field is equal to E ¼ ik0ðr � BÞ. In
cylindrical coordinates r, �, z, the z component of the
electric field oscillates in the vertical direction,
�a0 cosð!0tÞ; the � component of the magnetic field
vanishes on the axis, being linearly proportional to the
radius, �ða0=8Þk0r sinð!0tÞ; and the radial component of
the electric field is relatively small, �0:1a0k

2
0rz cosð!0tÞ.

The EM field and first Poincaré invariant Fðr; zÞ are shown
in Fig. 1. We see that the EM field is localized in a region of
width less than the laser wavelength, �0 ¼ 2�=k0. The
second invariant is equal to zero, G ¼ 0.
Using the expression for the probability of electron-

positron pair creation [7,9] and expanding Fðr; zÞ in the
vicinity of its maximum, we find that the pairs are created
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in a small four-volume near the electric field maximum
with the characteristic size

�r20z0t0 �
53=2�4

0

16�5c

�
a0
aS

�
2
: (2)

Here, we introduce aS ¼ eES=me!0c ¼ mec
2=@!0.

Integrating over the four-volume the probability of the
pair creation [15], we obtain the number of pairs produced

per wave period, ð53=2=4�3Þa40 expð��aS=a0Þ; i.e. the first
pairs can be observed for a one-micron wavelength laser
intensity of the order of 2� 1027 W=cm2, which corre-
sponds to a0=aS � 0:075, i.e., a characteristic size r0
approximately equal to 0:04�0.

In the region where the magnetic field vanishes, the
electron oscillates along the electric field. For an electron
generated at small but finite radius r0 � �0, the magnetic
field bends its trajectory outwards. By solving the electron
equations of motion linearized about the solution corre-
sponding to ultrarelativistic electron oscillations in the
z direction, i.e. a0!0t � 1, we can find the electron tra-
jectories, which are described in terms of modified Bessel
functions. The instability growth rate is approximately
equal to half the EM field frequency,!0=2; i.e. the electron
remains in the close vicinity of the zero-magnetic field
region, leaving it along the z direction.

The electron oscillating along the electric field emits
the high frequency EM radiation with the power � ð2�re=
3�0Þ!emec

2�2
e proportional to the square of electron energy.

In order to find the angular distribution and frequency spec-
trum of the radiation in this case, we should take into account
its dependence on the retarded time: t0 ¼ t� n � rðtÞ=c.
Here n is the unit vector in the direction of observation and
rðtÞ is the electron coordinate. Introducing the angle �
between vectors n and rðtÞ, n � rðtÞ ¼ jrðtÞj cos�, we can
find that in the direction of electron oscillations, � ¼ 0, the
radiation intensity vanishes. The maxima of the radiated
power correspond to the angle �m, for large �e, inversely
proportional to the particle energy: �m � 1=2�e.

The Fourier components of the four-vector potential of
the EM field according to Ref. [16] are

A�ð!Þ ¼ e

R

Z þ1

�1
u�

c
exp

�
i!

�
t� 1

c
n � rðtÞ

��
dt; (3)

where u� ¼ p�=me�e is the four-velocity. rðtÞ ¼
ezðc=!0Þ arcsin½	m sinð!0tÞ� and 	m ¼ a0ð1þ a20Þ�1=2.

Expanding the phase in expression (3), �ðtÞ ¼
!ft� ðcos�=!0Þ arcsin½	m sinð!0tÞ�g, over small pa-
rameters ��1

e;m and !0t, for � ¼ �m � 1=2�e;m, we obtain

�ðtÞ � !

�
ð1� 	m cos�Þtþ 	m cos�

6!0�
2
e;m

ð!0tÞ3
�
: (4)

Using the Airy integral, we can find the y component of the
four-vector potential of the EM field (3) and the radiation
power density. Since �� 1=�e;m � 1, and thus cos��
1� 1=2�2

e;m, the maximum frequency of the radiation

emitted by the linearly oscillating electron is !m �
0:21!0�

2
e;m.

To take into account the radiation friction, we use the
equation of motion of a radiating electron [16]. We can
estimate the regimewhere the radiation friction can become
relatively large by comparing the energy losses with
the maximal energy gain of an electron accelerated by

the electric field, _EðþÞ � !0mec
2a0, i.e. !0mec

2a0¼
"rad!0mec

2�2
e, where "rad¼4�re=3�0, with re¼e2=

mec
2. As is apparent, although an electron moving along

the oscillating electric field loses energy, radiation friction
effectsmay become important only at a0 ¼ 2"�1

rad , i.e., at the

electric field E0 ¼ 3m2
ec

4=e3, which is of the order of the
critical electric field of classical electrodynamics (see also
Ref. [15]). This is 137 times larger than the field ES.
In QED the charged particle interaction with EM fields

is determined by relativistically and gauge invariant pa-

rameters [17], 
e ¼ ½ðF��p�Þ2�1=2=mecES. The parameter


e characterizes the probability of the gamma-photon
emission by the electron with the Lorentz factor �e. It is
of the order of the ratio E=ES in the electron rest frame

of reference. Another parameter, 
� ¼ ½ðF��@k�Þ2�1=2=
mecES, is similar to 
e with the photon four-momentum
@k� instead of the electron four-momentum p�. It charac-

terizes the probability of the electron-positron pair creation
due to the collision between the high energy photon and the
EM field. QED effects come into play when the energy of a
photon emitted by an electron becomes comparable to
the electron kinetic energy, i.e., for @!m ¼ mec

2�e. In a
linearly polarized oscillating electric field the maximum
frequency of emitted photons, !m, is proportional to �2

0,

and, therefore, quantum effects should be incorporated into
the theoretical description at the electron energy corre-
sponding to the gamma factor �L

Q ¼ mec
2=0:21@!0, which

is above the Schwinger limit. We see that in the case of
electron motion in a linearly polarized oscillating electric
field, neither radiation friction nor quantum recoil effects
are important.
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FIG. 1 (color online). (a) The vector field shows r and z com-
ponents of the poloidal electric field in the r, z plane for the TM
mode. The color density shows the toroidal magnetic field distri-
bution, B�ðr; zÞ. (b) The first Poincaré invariant Fðr; zÞ.
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Reaching the threshold of an avalanche-type discharge
with EPGP generation discussed in Refs. [6,8] requires
high enough values of the parameters 
e and 
� defined

above, because for 
� � 1, the rate of the pair creation is

exponentially small [18], Wð
�Þ � �ðm2
ec

4=@2!�Þ
�

expð�8=3
�Þ. In the limit 
� � 1 the pair creation rate

is given by Wð
�Þ � �ðm2
ec

4=@2!�Þð
�Þ2=3 (for details

see Ref. [17]). Here @!� is the energy of the photon which

creates an electron-positron pair.
Since for �e 	 �Q the photon is emitted by the electron

(positron) in a narrow angle almost parallel to the elec-
tron momentum with the energy of the order of the electron
energy, the parameters 
e and 
� are approximately equal

to each other. The parameter 
e can be expressed via the
electric and magnetic fields as (see Ref. [17])


2
e ¼

�
�e

E

ES

þ p�B

mecES

�
2 �

�
p � E
mecES

�
2
: (5)

In order to find the threshold for the avalanche develop-
ment, we need to estimate the QED parameter 
e. The
condition for avalanche development corresponding to the
parameter 
e should become of the order of unity within
one-tenth of the EM field period (e.g. see Ref. [8]). Because
of the trajectory bending by the magnetic field, the electron
transverse momentum changes as p? � ða0=16Þ�
k0r0ð!0tÞ2, where k0r0 ¼ ð2:5a0=�asÞ1=2, Eq. (2). As-
suming !0t to be equal to 0:1�, we obtain from Eq. (5)
that 
e becomes of the order of unity; i.e., the avalanche can
start at a0=aS � 0:105, which corresponds to the laser
intensity 4� 1027 W=cm2. The radiation losses in this limit
can be described as the synchrotron losses of an electron
with the energy � mec

2 moving in the magnetic field
a0ðk0r0Þ=8. Using formulas for synchrotron radiation [16],
it is easy to show that they do not become significant until
a0 � 5� 104. At that limit the Schwinger mechanism pro-
vides approximately 5� 105 pairs per one period.

In the case of two colliding circularly polarized EM
waves, the resulting electric field rotates with frequency
!0 being constant in magnitude. The power emitted by the
electron is � "rad!0mec

2�4
e. This is a factor of �2

e larger
than in the case of linear polarization. The properties of
radiation emitted by a rotating electron are well known
from the theory of synchrotron radiation [15,16] and from
Ref. [19]. In the limit �e � 1 the emitted power is pro-
portional to the fourth power of the electron energy. The
radiation is directed almost along the electron momentum,
being localized within the angle inversely proportional to
the electron energy: �� � 1=�e. The frequency spectrum
given by the well-known expression [16] has a maximum
frequency, !m ¼ 0:29!0�

3
e, proportional to the cube of

the electron energy. This is a factor of �e larger than in the
case of linear polarization. For the electron rotating in
the circularly polarized colliding EM waves, the emitted
power becomes equal to the maximal energy gain at

the field amplitude a0 ¼ arad ¼ "�1=3
rad . For the laser

wavelength �0 ¼ 0:8 �m, "rad ¼ 2:2� 10�8. The nor-
malized amplitude arad is� 400, corresponding to the laser
intensity Irad ¼ 4:5� 1023 W=cm2.
We represent the electric field and the electron momen-

tum in the complex form E ¼ Ey þ iEz ¼ E0 expð�i!0tÞ
and p ¼ py þ ipz ¼ p? exp½�ið!0t� ’Þ�, where ’ is

the phase equal to the angle between the electric field
vector and the electron momentum. In the stationary re-
gime, when the electron rotates with constant energy, the
equations for the electron energy, �e ¼ ½1þ ðp?=
mecÞ2�1=2, and for the phase ’ have the form

a20 ¼ ð�2
e � 1Þð1þ"2rad�

6
eÞ and tan’¼� 1

"rad�
3
e

: (6)

In the limit of weak radiation damping, a0 � "�1=3
rad , the

absolute value of the electron momentum is proportional to
the electric field magnitude, p? ¼ meca0, while in the

regime of dominant radiation damping effects, i.e., at a0 �
"�1=3
rad , it is given by p? ¼ mecða0="radÞ1=4. For the mo-

mentum dependence given by this expression, the power
radiated by an electron isP�;C ¼ !0mec

2a0; i.e., the energy

obtained from the driving electromagnetic wave is com-
pletely reradiated in the form of high energy gamma rays.

At a0 � "�1=3
rad we have, for the gamma-photon energy,

@!� ¼ 0:29@!0a
3
rad � 0:45@!0ðmc3=e2Þ. For example, if

�0 � 0:8 �m and a0 � 400, the circularly polarized laser
pulse of intensity Irad ¼ 4:5� 1023 W=cm2 generates a
burst of gamma photons of energy about 20 MeV with the
duration determined either by the laser pulse duration or by
the decay time of the laser pulse in a plasma.
Since in the case of circular polarization !m is propor-

tional to the cube of the electron gamma-factor quantum
effects should be incorporated into the theoretical descrip-

tion at �e � �C
Q ¼ ðmec

2=0:29@!0Þ1=2 � 1300. For �e ¼
a0 this limit is reached at the intensity of
� 3:4� 1024 W=cm2. The electron motion should be
described within the framework of quantum mechanics.
These effects change the radiative loss function (see
Ref. [17]). In the quantum regime, it is necessary to take
into account not only radiative damping effects, but also
recoil momentum effects, which change the direction of
motion of the electron because the outgoing photon carries
away the momentum @km ¼ @!m=c.
In the regime when the radiation friction effects are

important, i.e., when a0 � "�1=3
rad , the angle ’ between

the electron momentum and the electric field is small,

being equal to ð"rada30Þ�1=4; i.e. the electron moves almost

in the electric field direction. The electron momentum is

given by p? ¼ mecða0="radÞ1=4. This yields an estimation


e � ða0=a2S"radÞ1=2. This becomes greater than unity

for a0 > "rada
2
S � 5:5� 103, which corresponds to the

laser intensity equal to 6� 1025 W=cm2. In Ref. [8] an
avalanche threshold intensity several times lower has been
found, neglecting the effects of the radiation friction force
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(see also [20]). However, the radiation friction time is of

the order of trad ¼ 1=!0ð"rada30Þ1=2, which for a0 � 5:5�
103 is approximately one-tenth of the laser period. Hence
the radiation friction effects do not prevent the EPGP
cascade development for circularly polarized colliding
waves. Such a prolific electron-positron pair and gamma
ray creation [6] should result in the EPGP generation.

While creating and then accelerating the electron-
positron pairs, the laser pulse generates an electric current
and an EM field. The electric field induced inside the EPGP
cloud with a size of the order of the laser wavelength �0

can be estimated to be Epol ¼ 2�eðnþ þ n�Þ�0. Here

nþ � n� are the electron and positron densities, respec-
tively. Coherent scattering of the laser pulse away from the
focus region occurs when the polarization electric field
becomes equal to the laser electric field. This yields, for
the electron and positron density, nþ � n� ¼ E=4�e�0.
The particle number per �3

0 volume is about a0�0=re.
This is a factor a0 smaller than required for the laser
energy depletion.

In conclusion, a high enough laser intensity pulse with
arbitrary polarization plus high enough density of seed
electrons, e.g., generated in the laser interaction with solid
targets, can provide necessary and sufficient conditions for
the avalanche development [6]. Instead, in vacuum, when
the seed electrons (positrons) are created via the Schwinger
mechanism, we see a fundamental difference between the
circularly and linearly polarized waves. In the case of the
circularly polarized EM wave, the electron radiation is
strong and the threshold for the avalanche is low enough
for an avalanche starting at the laser intensity well below
the Schwinger limit. Since, as noted in Ref. [6], the
electron-positron avalanche parameters are insensitive to
the seed electrons (positrons), the parameters of the
Schwinger created pairs become hidden and can hardly
be revealed. Contrary to this, the linearly polarized EM
wave is more favorable for the realization and reaching of
‘‘pure’’ Schwinger electron-positron pair creation. An
electron moving along the electric field with velocity and
acceleration parallel to the field emits much fewer photons
with substantially lower energy, experiencing neither the
radiation friction nor quantum recoil effects. We see an
analogy of these cases with circular and linear electron
accelerators to the corresponding constraining and reduced
roles of synchrotron radiation losses. The electron-positron
pair creation in the Breit-Wheeler–type process is also
suppressed because the dependence of the key parameters

e and 
� on the electron and photon momenta, in the laser

field with the same intensity, is much weaker.
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