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We consider a layered system of fermionic molecules with permanent dipole moments aligned

perpendicular to the layers by an external field. The dipole interactions between fermions in adjacent

layers are attractive and induce interlayer pairing. Because of the competition for pairing among adjacent

layers, the mean-field ground state of the layered system is a dimerized superfluid, with pairing only

between every other layer. We construct an effective Ising-XY lattice model that describes the interplay

between dimerization and superfluid phase fluctuations. In addition to the dimerized superfluid ground

state, and high-temperature normal state, at intermediate temperature, we find an unusual dimerized

‘‘pseudogap’’ state with only short-range phase coherence. We propose light-scattering experiments to

detect dimerization.
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The long-range and anisotropic nature of dipole-dipole
interactions offers new opportunities for ultracold polar
molecules, beyond what is possible for cold-atom systems
with only short-range, isotropic contact interactions [1].
A variety of exotic many-body states, including px þ ipy

fermionic superfluids [2] and nematic non-Fermi liquids [3],
are predicted to occur in cold dipolar systems. Additionally,
polar molecules could provide a robust toolbox for engineer-
ing novel lattice-spin Hamiltonians [4] or hybrid devices for
quantum information processing [5]. Recent progress to-
wards trapping and cooling atoms and molecules with per-
manent electric or magnetic dipole moments has opened the
door to exploring these exotic states of matter experimen-
tally [6]. In order to prevent the system from collapsing due
to the attractive head-to-tail part of the dipolar interaction
[7], it has been proposed [8,9] to create stacks of dipolar
particles confined to a set of parallel planes.

In this Letter, we consider a stack of two-dimensional

layers of polar fermions whose dipole moments ~D are
aligned along the stacking direction (z axis) by an external

field (see Fig. 1). The dipole interaction Vd ¼ D2

r3
ð1� 3 z2

r2
Þ

is purely repulsive between fermions in the same layer, and

partially attractive (for r <
ffiffiffi
3

p
z) between fermions in dif-

ferent layers. The attractive interlayer component of the
dipole interaction induces BCS pairing between layers,
with adjacent layers competing for pairing. We demon-
strate that competition between adjacent layers favors
dimerization, with pairing only between even or odd pairs
of layers (Fig. 1).

We find three distinct phases: a high-temperature disor-
dered phase, a fully ordered phase characterized by a
dimerized pairing amplitude and a quasi-long-range or-
dered (QLRO) pairing phase in each layer (Fig. 1), and a
dimerized ‘‘pseudogap’’ phase with only short-range
superfluid correlations. The latter phase is particularly

interesting, since it can only be characterized by a
composite four-fermion dimerization order parameter.
Therefore, this phase does not admit a mean-field
(Hartree-Fock) description. This is analogous to spin nem-
atics [10] and charge 4e superconductors [11], which are
both phases of strongly interacting fermions that can only
be characterized by composite order parameters.
Fermionic pairing in a layered system.—The action for

an N-layer system in terms of fermionic fields c is

S ¼ XN
z¼1

X
k

c y
z;kð@� þ "k ��Þc z;k

� XN
z;z0¼1

X
k;k0;q

c y
z;k0c

y
z0;q�k0V

ðz;z0Þ
jk�k0jc z0;q�kc z;k; (1)

FIG. 1 (color online). Schematic representation of the compe-
tition for pairing among adjacent pairs of layers, including
the depiction of the optical confinement beam which creates
the stack of 2D sheets (left diagram) and the illustration of one
of the two equivalent dimerized pairing ground states for a
many-layered system (right diagram). The wavy lines illustrate
the proposed light-scattering detection scheme discussed below
in the text.
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where z and z0 are (integer) layer labels, and c y
z;kð�Þ

creates a fermion with in-plane momentum k and imagi-
nary time � in layer z. (The � labels have been suppressed

above.) Vðz;z0Þ
q is the dipolar interaction between layers z

and z0, Fourier transformed with respect to the in-plane

separation: for example, Vðz;z�1Þ
q ¼ �D2qe�qd.

By solving the BCS gap equation, �z;k ¼ �P
k0�

Vðz;zþ1Þ
k�k0 hc zþ1;�k0c z;k0 i, we find that the attractive inter-

layer interactions induce fermionic pairing between adja-
cent layers z and z� 1 (see Ref. [12] for details). The
interaction between next-nearest layers and beyond is
small, and will be neglected throughout most of this
Letter. To decouple the four-fermion interaction term, we
introduce Hubbard-Stratonovich (H-S) fields �zðr?Þ asso-
ciated with the pairing order parameters (where r? is the
in-plane coordinate), and integrate out the fermionic de-
grees of freedom [12]. Expanding the resulting fermionic
determinant to quartic order (valid in the vicinity of the
phase transition where j�j is small) yields the following
Ginzburg-Landau (GL) free energy:

F ¼ X
z

Z
d2rð�jr?�zj2 þ rj�zj2 þ uj�zj4

þ 2uj�zj2j�zþ1j2Þ; (2)

where r? denotes the gradient restricted to the xy plane.

The GL coefficients are given by � ¼ 7�ð3Þ
32�3

"F
T2 , r ¼ �t,

and u ¼ 1:7
32

�
T3 , where � is the Riemann zeta function, t ¼

ðT � TcÞ=T is the reduced temperature, "F is the Fermi
energy, and � is the two-dimensional density of states (for
details we refer the reader to the Ref. [12]).

An important feature of this free energy is that the H-S
expansion does not generate j@z�j2 terms, but only terms of
the form @zj�j2. The absence of j@z�j2 terms is not an
artifact of the H-S expansion; rather, it is guaranteed by
particle number conservation for each layer individually.
Particle conservation for each layer stems from the absence
of interlayer tunneling, and formally corresponds to

NLayers independent Uð1Þ phase rotation symmetries, c z !
ei�z=2c z, of fermion fields c z in layer z. In contrast to other
quasi-two-dimensional systems, such as superconducting
thin films where the behavior of the system tends towards
three dimensional as the film thickness is increased, two-
dimensional Berezinskii-Kosterlitz-Thouless (BKT) physics
remains important even for a large number of layers.

Mean-field ground state.—The 2uj�ij2j�iþ1j2 term in
(2) indicates that adjacent pairs of layers compete with
each other for pairing. For NLayers > 3, the mean-field

theory predicts that it is energetically favorable for the
system to spontaneously dimerize into one of two equiva-
lent configurations, where � vanishes between every other
layer: j�jj ¼ 1

2 ½1� ð�1Þj��0 (see Fig. 1). The situation

for NLayers ¼ 3 is more subtle, and we defer its discussion.

Effective lattice model for many-layer systems.—
The above mean-field analysis suggests that the relevant

degrees of freedom for a many-layer dipolar system are
Ising-like dimerization between even or odd layers, and
two-dimensional XY-like phase fluctuations of the inter-
layer pairing order parameters. In order to describe phase
transitions in this system, we course-grain the GL theory
(in-plane) over length scales below the GL coherence

length �GL � ð�=jrjÞ1=2, and obtain the following effective
lattice model [13],

F ¼ X
z

�
Kz

X
i

	z;i	zþ1;i � K?
X
hiji

	z;i	z;j �
X
hiji

Jð	z;i; 	z;jÞ

� ½cosð�z;i � �z;jÞ � 1�
�
; (3)

of Ising variables 	i;z 2 f�1g coupled to XY phase varia-

bles �z;i ¼ arg�zð~riÞ 2 ½0; 2��, where z labels physical

layers, i labels lattice sites in the xy plane, and
Jð	z;i; 	z;jÞ � J0ð1þ 	z;iÞð1þ 	z;jÞ=4.
In the lattice model, 	z ¼ þ1 (	z ¼ �1) indicates that

layers z and zþ 1 are paired (unpaired, respectively). The
uniformly dimerized ground state of the multilayer system
corresponds to antiferromagnetic Ising order along the
z axis and ferromagnetic order within the xy plane. The
Ising domain walls (DW) correspond to regions where
pairing switches between the two equivalent dimerization
configurations over a distance of the order of the GL
coherence length, either along the z axis or within the
xy plane. The coupling constants Kz and K? reflect the
energy cost of deforming the magnitude of the pairing
order parameter, j�j, to form a domain wall along the
z axis or in the xy plane, respectively (see Fig. 2).
The coupling Jð	z;i; 	z;jÞ corresponds to the average

superfluid stiffness 
� �j�j2 in the vicinity of the lattice
site (i, z) and determines the energy cost of twisting the
phase of the order parameter �z;i between sites i and j in
the same plane. The local stiffness is nonzero wherever
	z;i ¼ þ1, and zero otherwise [12].

The lattice-model couplings (Kz, K?, J0) can be
estimated from the GL model. An in-plane dimerization

FIG. 2 (color online). Schematic depiction of the fully dimer-
ized phase (a), in-plane Ising DW (b), the z-axis Ising DW with
pairing between two adjacent pairs of layers (c), and the z-axis
Ising DW with no pairing for two adjacent pairs of layers (d).
Green shading between layers indicates pairing.
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domain wall along the x direction [Fig. 2(b)] corres-
ponds to pairing configurations of the form �zðxÞ¼
�0

2 ½1þð�1Þz�ðxÞ�, where �2
0 ¼ jrj

2u and �ðxÞ is a function

that changes from �1 to þ1 around x ¼ 0 and tends to a
constant away from x ¼ 0. Minimization of the free energy
with respect to �ðxÞ yields �ðxÞ ¼ tanhð2x=‘DWÞ, where
‘DW �

ffiffiffiffiffiffi
32�
3r

q
[12]. The corresponding free energy cost per

unit length is Uð?Þ
DW ¼ ‘DW

jrj2
8u .

There are two possible z-axis domain-wall configura-
tions, shown in Figs. 2(c) and 2(d). To determine their free
energy cost, we consider a system with periodic boundary
conditions along the z axis, and compare the free energy of
the ground state to that of the domain-wall configurations.

This yields an energy cost per unit areaUðzÞ
DW ¼ jrj2

8u for both

types of domain walls. Setting the lattice spacing equal to
‘DW, the energetics of in-plane and z-axis domain walls are

reproduced by Kz ¼ 2K? ¼ 4�jrj
3u . In order to determine

the lattice phase stiffness J0, we equate the cost of an
infinitesimal phase twist, �z;j ¼ �z;i þ ��, in a fully paired

layer (	z ¼ 1) to the corresponding cost in the GL free

energy [Eq. (2)]. This gives J0 ¼ �jrj
u .

The lattice model [Eq. (3)] describes three-dimensional
Ising spins coupled to many independent two-dimensional
XY layers. For temperatures near or below the Ising tran-
sition temperature, the Ising variables have large correla-
tion lengths and hence see an average over many
independent layers of XY spins. With this self-averaging
property in mind, we decouple the XY and Ising variables
in a mean-field factorization,

F	 ¼ Kz

X
hzz0i;i

	zi	z0i � KðeffÞ
?

X
z;hiji

	zi	zj � h
X
z;i

	zi

FXY ¼ �X
hiji

J0
4
½1þ ð�1Þz	0�2 cosð�z;i � �z;jÞ;

where KðeffÞ
? ¼ K? þ J0

4 ðAþB
2 Þ and A, B � hcosð�ðe=oÞi �

�ðe=oÞj ÞiFXY
� 1 are the averages (with respect to FXY) of

the cosine terms in even and odd layers, respectively, 	0 �
h	iF	

, and h ¼ ðA�B
2 Þ J02 .

The decoupled Ising model and XY models can then be
analyzed separately but self-consistently. A mean-field
analysis is adequate for the 3D Ising model. The phase
action is treated by a variational self-consistent harmonic
approximation (SCHA) [14]. While the SCHA provides a
reasonable estimate of the location of the 2D BKT tran-
sition, it spuriously predicts a strong first-order transition
in which hFXYiSCHA drops abruptly to zero at the XY
transition temperature, TXY . At higher temperatures, the
SCHA dramatically underestimates the contribution to the
energy density from phase fluctuations. In order to avoid
this undesirable feature, we supplement the SCHA value
for hcos�ij�iSCHA with a high-temperature expansion

for T > TXY :

hcos�ij�
ðzÞi ¼

� hcos�ij�
ðzÞiSCHA T < TXY

Jð	0; 	0Þ=2T T > TXY:
(4)

Figure 3 shows the phase diagram predicted by the
effective lattice model. The main figure displays the phase
diagram where the model parameters are taken from
the GL coefficients in (3). The BCS transition temperature
TBCS
c is obtained by solving numerically the BCS gap

equation for the dipole potential. Whereas the dimerization
transition occurs close to the mean-field BCS transition
temperature TBCS

c , the BKT transition to the QLRO phase
occurs at a lower temperature, leaving an intermediate
region with full dimerization but only short-range super-
fluid correlations.
Recent experiments on 3D clouds of ultracold 40K87Rb

molecules have achieved densities on the order of n3d ¼
1012 cm�3 and permanent electrical dipole moments of up
to 0.566 Debye [6]. If similar densities were achieved in a
layered system with layer spacing on the order of 400 nm,
the ratio of typical dipole interactions to Fermi energy
would be D2=ð4�"0d3"FÞ � 3.
While the GL parameters in Eq. (2) provide an initial

estimate of the lattice-model coupling constants, in princi-
ple, the model coefficients can be renormalized by higher
order terms in the GL expansion. The inset shows the phase
diagram for generic values of the model parameters K?
and J0 with Kz=K? ¼ 2 (the qualitative features do not
depend sensitively on this ratio). An additional feature
emerges for generic coefficients: for J sufficiently bigger
than K, there is a tricritical point where the BKT and Ising
transitions fuse into a weakly first-order phase transition.
Order parameter and detection.—The dimerized phase

breaks translational symmetry in the z direction. It can
be characterized by the following four-fermion order

FIG. 3 (color online). The lattice-model phase diagram, calcu-
lated using the temperature dependence of the GL coefficients in
(3) and plotted in terms of the dipole-interaction strength D2=d3

and temperature T, each measured in units of "F (main figure).
The inset shows the phase diagram predicted by the effective
lattice model for generic model parameters, with Kz=K? ¼ 2.
The double line indicates the first-order transition.
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parameter: D ¼ hnz�1;rnz;r � nz;rnzþ1;ri, where nz;r ¼
c y

z;rc z;r is the local fermion density. For finite transverse

confinement, in the dimerized phase, every two paired
layers shift slightly towards each other. The displacement
scales as �z / ��2

z , where �z is the layer-confinement
frequency in the z direction. The dimerized phase can be
detected by the appearance of new Bragg peaks in elastic
light scattering (see Fig. 1) with wave vector Q ¼ n�ẑ=d,
n ¼ 1; 3; . . . , with intensity ��z2.

In the strong-confinement limit, �z ! 1, the particle
density does not show any sign of dimerization. However,
in this regime, the dimerized phase could still be detected
by measuring correlations between the amplitudes of light
scattered at different wave vectors: hnqnq0 i / n20�qþq0 þ
�Q�q�q0D, where q and q0 are two scattering wave vectors
and n0 is a constant.

Three-layer case.—The three-layer system is a special
case that requires more careful analysis. If one proceeds as
above and includes interactions only between neighboring
layers, the system possesses an extra SUð2Þ symmetry

generated by Iz ¼ R
d2rðc y

3 c 3 � c y
1 c 1Þ and I� ¼R

d2rðc y
3 c 1 � ic y

1 c 3Þ. The Uð1Þ generator N2 ¼R
d2rc y

2 c 2 completes the SUð2Þ symmetry to Uð2Þ.
These generators commute with H ¼ H kin þ V12 þ
V23, where Vij is the interaction between layers i and j.

This Uð2Þ symmetry dictates that, to all orders in the GL
expansion, the free energy should be a function of ðj�1j2 þ
j�2j2Þ only, which does not energetically distinguish di-
merization from uniform pairing.

However, intralayer and next-nearest neighbor interac-
tions ~V ¼ V13 þ

P
3
j¼1 Vjj break theSUð2Þ symmetry of the

three-layer system, and generate a quartic term of the form
�jvjj�1j2j�2j2 in the GL free energy. This term is relevant
[15] (in the renormalization group sense), and hence, we
expect the trilayer system to exhibit uniform pairing with
j�1j ¼ j�2j. In contrast, for NLayers > 3, already the domi-

nant nearest neighbor interactions strongly favor dimeriza-
tion, and ~V only produces small subleading corrections.

Discussion.—We expect that the Ising-XY model de-
scription of the layered dipolar fermions will be insuffi-
cient deep in the BEC regime, where interaction energies
are dominant compared to the Fermi energy. For suffi-
ciently strong interactions or sufficiently dense systems,
the system will form a Wigner crystal [16]. Another pos-
sibility is that the formation of longer chains of three or
more dipoles may become important [9]. In a regimewhere
chains of n dipoles are favorable, a many-layered system
would undergo n-merization rather than dimerization.
Correspondingly, an n-merized phase may undergo an
n-state clock-model-type phase transition which general-
izes the Ising-type dimerization transition considered
above. Furthermore, for even n, bosonic chains could
condense into an exotic superfluid of dipolar chains.
Such states offer an intriguing chance to examine the

relatively unexplored boundary between few-body interac-
tions and many-body phase transitions, and they deserve
further study.
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