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As highly tunable interacting systems, cold atoms in optical lattices are ideal to realize and observe

negative absolute temperatures, T < 0. We show theoretically that, by reversing the confining potential,

stable superfluid condensates at finite momentum and T < 0 can be created with low entropy production

for attractive bosons. They may serve as ‘‘smoking gun’’ signatures of equilibrated T < 0. For fermions,

we analyze the time scales needed to equilibrate to T < 0. For moderate interactions, the equilibration

time is proportional to the square of the radius of the cloud and grows with increasing interaction strengths

as atoms and energy are transported by diffusive processes.
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The concept of temperature is central in thermodynam-
ics. For most systems, where the energy E has no upper
bound, only positive temperatures, T > 0, are allowed in
equilibrium. However, in any system with an upper bound
in energy, T < 0 are possible. In this case, states with
higher energy are occupied more likely than states with
lower E. Negative T and even phase transitions at T < 0
have been realized in nuclear spin systems [1–3]: antifer-
romagnetically coupled nuclear spins show ferromagnetic
order at T < 0 where high-energy states are dominantly
populated. Such an ‘‘inverted’’ population is also the basis
of most lasers.

While negative temperatures lead to many nonintuitive
results, all laws of thermodynamics can equally be applied
[4]. Figure 1(a) shows schematically the entropy S as a
function of energy for a system with a maximal and
minimal energy. As 1=T ¼ @S=@E, negative T arises
whenever the entropy decreases as a function of energy.
One consequence is that a Carnot engine, which operates
between two reservoirs with temperatures T1 < 0 and
T2 > 0, has an efficiency � larger than 1: � ¼ W=Q1 ¼
1� T2=T1 > 1, where W is the work done and Q1 is the
heat extracted from the (hotter) reservoir. Usually, �< 1
as the entropy�S extracted from the hot reservoir has to be
dumped into the second reservoir and the corresponding
heat T�S is lost. If the first reservoir has, however, nega-
tive T, its energy is lowered when the entropy increases,
see Fig. 1(a): heat can be extracted from both systems
simultaneously and therefore �> 1.

With quantum-optical methods it is possible to manipu-
late atoms in an unprecedented way. Atoms in optical
lattices allow us not only to realize Hubbard models [5]
for bosons [6] and fermions [7,8], but also to control all
parameters with high precision. In the following, we will
first show how simple manipulations of such systems can
be used to create and detect unambiguously equilibrated
quantum states at negative T, following partially a proposal

of Mosk [9], and then we discuss in the case of fermions the
time scales needed for equilibration.
Atoms in sufficiently deep optical lattices can be de-

scribed by Hubbard models [5] given by
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FIG. 1 (color online). (A) Entropy as a function of energy
(schematically) for a system with an upper and lower bound of
energy. For high energies, 1=T ¼ @S=@E is negative. Arrows: for
two reservoirs with T > 0 and T < 0, respectively, one can
remove reversibly energy from both reservoirs by reducing the
entropy for T > 0 and increasing it by the same amount for T <
0. (B) Schematic time-of-flight image of expanding bosons. For
T > 0, repulsive bosons condense at momentum 0 (with higher
order peaks from Bragg reflections). For T < 0, condensates of
attractive bosons form in the maxima of the kinetic energy for
momenta (� �=a, ��=a, ��=a).
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for fermions and bosons, respectively. U is the local inter-
action, J the tunneling rate and� ¼" , # the hyperfine index
for the fermions. V0ðtÞ represents a time-dependent para-
bolic potential with ni� ¼ fþi�fi�, ni ¼ bþi bi. In Eqs. (1)
and (2) higher bands are omitted. As discussed in detail by
Mosk [9], typical tunneling rates into such bands are ex-
ponentially suppressed and negligible.

Negative T in equilibrium is only possible for
Hamiltonians bounded from above. Thus, for the models
(1) and (2), V0 < 0 and for bosons also U < 0 is required.
Nevertheless, ultracold atoms have to be prepared with
some V0 > 0 initially, and we shall discuss how T < 0 can
be reached from such conditions (preparation of high-
energy states in spin-systems is discussed in Ref. [10]).

To get some intuition on negative T, note that the

equilibrium density matrix, e�H=kBT , for a Hamiltonian H
at T < 0 is identical to the density matrix for reversed
temperature ~T ¼ �T and a Hamiltonian ~H ¼ �H. For
the models (1) and (2) therefore considering T < 0 is
equivalent to ~T > 0 with parameters �V0, �U, and most
importantly,�J. As for a cubic lattice with lattice constant
a the sign of J can be absorbed into a shift of all momenta,
k ! kþQ with Q ¼ ð�=a;�=a;�=aÞ [using [11] that
�J cosðkaÞ ¼ J cosðkaþ �Þ], the phase diagram of the
negative-U Hubbard models for T < 0 are identical to
that of the positive-U Hubbard models if the momenta are
shifted in all observables. Most dramatically, bosons will
therefore condense at momenta (� �=a, ��=a, ��=a),
i.e., in the maxima of the band structure, for U < 0, T < 0
[see Fig. 1(b)]. Note that T < 0 bosonic condensates are
stable for attractive and unstable for repulsive U. For
fermions superfluidity can also be reached for T < 0,
U > 0 but in this case the fermionic pairs condense at
zero momentum as
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mark that it has been shown [12] that for U � J one can
nevertheless induce a condensate at momentumQ even for
fermions in a different nonequilibrium situation. To sum-
marize, the momentum distribution of a Bose-Einstein
condensate (BEC) is probably the best way to detect
T < 0 due to the qualitative difference to the T > 0 system,
and we will quantitatively estimate under what conditions
such a state can be reached.

In principle, it is possible to reach T < 0 without any
entropy production by first adiabatically decreasing J until
J ¼ 0, then switching suddenly U ! �U and V0 ! �V0,
followed by an adiabatic increase of J until the desired
value is reached. In practice this is not a good choice as the
time scales for equilibration diverge for J ! 0. Therefore
one needs a faster scheme where J remains finite but as
little entropy as possible is produced. As a reversal of V0,U
and T is formally equivalent to a sudden quench J ! �J
without inverting T (see above), the basic idea is to start
from an initial state where J is finite but the kinetic energy
is very small, i.e., a Mott or a band insulator.

For bosons we propose the following. The system is
(I) prepared in a Mott-insulating state. (II) J is switched

off suddenly by increasing the intensity of the optical
lattice. This freezes all density-density correlation func-
tions. One waits (III) for a time tw during which the
potential and the interaction are reversed slowly, V0 !
�V0 and U ! �U. (IV) J is switched suddenly back to
its initial value and (V) the system equilibrates. Finally,
(VI) the negative trapping potential or the interaction
strengthU is weakened adiabatically with the goal to reach
a superfluid condensate at T < 0. For fermions, parts of
this scheme have been implemented in Ref. [11], where,
however, V0 was not reversed but set to 0.
The waiting time tw allows us to reverse V0 andU slowly

(manipulation of U requires ‘‘slow’’ changes of magnetic
fields in some experimental setups), and more importantly,
it leads to a complete dephasing of the kinetic energy, Ekin,
as has been argued in Ref. [11]: During tW each site in the
lattice collects a different phase due to V0. Effectively,

therefore Ekin / P
hijihbyi bji averages to zero for tW �

1=�V, where �V is the potential difference between
neighboring sites. Note that for a Mott insulator Ekin

vanishes in the center of the trap but is sizable in the outer
parts of the cloud where �V is large. Estimates using the
parameters of Ref. [6] show that waiting times tw * 10 ms
are sufficient for a complete dephasing.
For a quantitative estimate of the entropy generated

during this sequence, one first needs to know the total
energy Etot after step (V), i.e., before the final equilibration
stage. As the kinetic energy is zero after dephasing and the
initial density distributions are fully preserved, we obtain
Etot ¼ �ðEint þ EpotÞ, where Eint and Epot are the initial

interaction and potential energies, respectively. We obtain
these variationally using the Gutzwiller wave function for
bosons [13] assuming a low-T initial state for a given
strength of the confining potential characterized by the

dimensionless compression V0N
2=3=6J, where N is the

number of atoms. This combination appears naturally [8]
as the thermodynamic limit in a trap is given by N ! 1
with V0N

2=3 ¼ const.
Energy conservation allows us to determine the state

after equilibration. The corresponding temperature will be
negative and large. We therefore used a high-temperature
expansion [14] to obtain the thermodynamic potential in
the presence of the trap. We found that an expansion up to
4th order in �J gives accurate results. For simplicity, we
locally approximated the system by a homogeneous one.
Corrections to this so-called local-density approximation

[15] vanish with 1=N1=3 and are therefore tiny for typical
atom numbers, N � 105. Finally, the (negative) tempera-
ture was determined by setting hHbi ¼ Etot and then the
entropy was computed from the high-T expansion.
In Fig. 2 the entropy per boson is shown as a function of

the initial compression V0N
2=3 of the cloud for several

values of U. We also calculated the result without dephas-
ing (dashed lines), obtained in the limit tW ! 0, corre-
sponding to the scheme originally proposed by Mosk [9].
Entropies and jTj are about 40% higher in this case.
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The entropy per boson drops for increasing jV0j as larger
and larger fractions of the cloud become Mott insulating
and thus insensitive to sign changes of J. Most importantly,
even for moderate compressions and moderate values of U
the entropy per boson is well below the critical entropy of
an ideal Bose gas in a d ¼ 3 harmonic trap, S=N < s0 ¼
3:6kB. This implies that for realistic parameters, one can
expect the formation of the negative-T Bose-Einstein con-
densate after the adiabatic expansion [step (VI)] charac-
terized by the momentum distribution of Fig. 1(b) and by a
large condensate fraction. Figure 2 shows the condensate
fraction assuming that in step (VI) jUj has been reduced
adiabatically to 0 for fixed V0 < 0.

We will now consider spin-1=2 fermions focusing on
dimensions d ¼ 2 to simplify numerics. With fermions one
can reach T < 0 using a time-independent U starting from
a band insulating, rather than a Mott-insulating initial state.
We will focus our discussion on the time scales needed to
reach T < 0. To determine the dynamics, we use a numeri-
cal solution of the Boltzmann equation in relaxation time
approximation, [11]

@tfþ vk � rrfþ F � rkf ¼ � 1

�ðn; eÞ ðf� f0ðn; eÞÞ;
(3)

where fðr;k; tÞ is the occupation probability in phase
space and the force term F ¼ �rrðV0r

2Þ �UrrnðrÞ con-
tains the external potential and interaction corrections on
the Hartree level. n ¼ n" ¼ n# ¼ nðr; tÞ and e ¼ eðr; tÞ are
the local particle densities per spin and energy density,
respectively, and f0ðn; eÞ is a Fermi function chosen such
that energy and particle number are conserved. In Ref. [11]
we have determined the scattering rate 1=�ðn; eÞ to repro-
duce the e- and n-dependent diffusion constant of the
Hubbard model to orderU2 (obtained from an independent

calculation). Most importantly, 1=�ðn; eÞ vanishes for low
densities, 1=�ðn; eÞ / n, in the tails of the cloud where
scattering is rare. In Ref. [11] the numerics was also
compared to experiments.
We first consider an instantaneous quench, V0i ! V0f ¼

�0:05V0i for U ¼ 2J and parameters which reflect ap-
proximately the experimental conditions of Ref. [11].
Temperature and density profiles (and parameters) are
displayed in Fig. 3. Here Tðr; tÞ is defined as the tempera-
ture of a homogeneous reference ensemble in equilibrium
with the same energy and particle density.
Because of energy conservation and the upper bound on

the kinetic energy, the atomic cloud cannot expand to
arbitrary size but equilibrates for t ! 1. The initial
T > 0 becomes rapidly negative and slowly obtains a
homogeneous value (which can be calculated from energy
conservation in an independent way). It takes longer to
equilibrate in the tails of the cloud, where scattering rates
are small and strong Bloch oscillations occur.
Two time scales determine the relaxation mainly. First,

�ðn; eÞ determines locally the equilibration rate according
to Eq. (3) but local interactions do not change the local
energy and particle density. Therefore a second time scale
describes how long it takes to redistribute particles and
energy across the cloud. For not too weak interactions, see
below, this transport will be diffusive and not convective as
momentum is not conserved and can be efficiently trans-
ferred to the optical lattice by umklapp scattering for the
relatively high jTj considered here. The corresponding
diffusion time is estimated as

�D � r2

D
�U2N

J3
(4)

where r is the radius of the cloud, D� v2� the diffusion
constant, v� Ja the typical velocity (for T � J), 1=��
nU2=J and nðr=aÞ2 � N. The inset of Fig. 4 displays 1=T
in the center of the cloud as a function of �D=t. It shows
that �D becomes the relevant time scale for large N and not
too small U. Furthermore, for t � �D, where the edges of
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FIG. 2 (color online). Entropy per boson as a function of the
initial confinement V0, for different initial interactions U after
following the steps (I)–(V); see text. Dotted line: Condensate
fraction at momenta (� �=a, ��=a, ��=a) for U ¼ 120J
after a slow decrease of jUj during step (VI). A slightly higher
condensate fraction is obtained, if in step (VI) jV0j is reduced
(not shown). Inset: inverse temperatures. Dashed lines: results
for U ¼ 120J using the protocol suggested by Mosk [9], i.e.,
without dephasing of the kinetic energy.
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1:2kB and N ¼ 6000 particles per spin.
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the cloud do not yet play a role, there is a regime, where
�� 1=t is observed as expected for (energy) diffusion in
d ¼ 2. Figure 4 also shows the time t90ðUÞ needed to reach
J�0 ¼ �0:469 (90% of the inverse temperature for t ! 1,
U ! 0). For larger U one gets t90 � �D / U2 but for small
U, t90 diverges due to the divergence of the local relaxation
time, � / 1=U2. In all cases, relaxation is not very fast,
t90 > 300=J. The fastest relaxation to equilibrium occurs
for relatively weak interactions when U is a fraction of the
full bandwidth 8J.

In order to reach T < 0 with small jTj, it is useful to
decrease jV0j slowly to reduce entropy generation and to
see whether adiabatic conditions can be realized. We there-
fore use the protocol shown in the inset of Fig. 5: after a
sudden quench at t ¼ 0, V0i ! �V0i, �V0 is reduced
linearly, V0ðtÞ ¼ �V0i þ ðV0f þ V0iÞt=�t for t < �t and

V0ðtÞ ¼ V0f < 0 for t >�t. As shown in Fig. 5, upon

increasing �t, considerably lower values of �< 0 can be
obtained and one approaches the adiabatic limit. Only due
to the high entropy assumed for the initial state (S=N ¼
1:2kB, implying J� � 1:47 for V0i ! jV0fj adiabatically),
jTj remains relatively high even for �t ! 1 where J� �
�1:21. The overall entropy production for �t ! 1 is tiny,
�S=N � 0:12kB, [c.f. the bosonic case, Fig. 2] as for the
large initial T, kinetic energies were small. Note that even
for �t ¼ 1600=J deviations from the adiabatic behavior
are considerable, which shows how difficult it is to reach
truly adiabatic conditions. Nevertheless, it is possible to
reach T � �2J within a time 200=J � 100 ms for typical
parameters [11].

In our opinion the observation of finite momentum
superfluidity, Fig. 1(b), is probably the best ‘‘smoking
gun’’ signature of T < 0 in equilibrium. To reach it, it is,
however, necessary to switch the interaction U ! �U
using a Feshbach resonance for bosons. We expect that
the associated loss processes by three-particle scattering
can efficiently be reduced in an optical lattice. An impor-
tant issue are the time scales needed for local equilibration

and—most importantly—redistribution of energy and par-
ticles across the system. For fermions we find that relaxa-
tion is most efficient for relatively weak interactions. More
generally, the long equilibration times arising from the
necessity to redistribute energy and particles should be
important for all equilibration processes and quenches in
inhomogeneous systems both for positive and negative T.
Here we expect that the equilibration properties of low-jTj
bosons differ qualitatively from high-jTj fermions due to
the suppression of umklapp scattering for bosons and due
to the onset of superfluidity.
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