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Radiation reaction effects in the interaction of an electron and a strong laser field are investigated in the

realm of quantum electrodynamics. We identify the quantum radiation reaction with the multiple photon

recoils experienced by the laser-driven electron due to consecutive incoherent photon emissions. After

determining a quantum radiation dominated regime, we demonstrate how in this regime quantum

signatures of the radiation reaction strongly affect multiphoton Compton scattering spectra and that

they could be measurable in principle with presently available laser technology.
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The radiation reaction (RR) represents one of the oldest
unresolved problems in electrodynamics [1,2]. In classical
electrodynamics, a charged particle in the presence of
an external electromagnetic field emits electromagnetic
radiation and continuously loses energy and momentum
so that the emission modifies the trajectory of the particle
itself. To take into account this ‘‘reaction’’ of the emitted
radiation on the electron motion, one should solve the
Lorentz equation together with the Maxwell equations
self-consistently. This amounts to solving the so-called
Lorentz-Abraham-Dirac (LAD) equation of motion [2].
This equation, although solving in principle the problem
of the RR classically, is plagued by inconsistencies, like
the existence of the so-called runaway solutions [1,2].
However, these inconsistencies are fictitious in the realm
of classical electrodynamics as they arise at length and
time scales well in the quantum regime [1]. Moreover, in
classical electrodynamics the LAD equation can be con-
sistently approximated by the so-called Landau-Lifshitz
(LL) equation, which does not show the shortcomings of
the LAD equation [1,3,4]. The LL equation has not yet
been tested experimentally, and proposals have been put
forward to achieve this goal [5,6]. An alternative classical
equation of motion including the RR phenomenologically
has been proposed in Ref. [7].

Though in the realm of classical electrodynamics the
force on the electron due to the RR is much smaller than
the Lorentz force in the instantaneous rest frame of the
electron, it can be the dominant force in the laboratory
frame [1]. Accordingly, the so-called (classical) radiation
dominated regime (RDR) for Thomson scattering can be
identified [5,8]. In the case of an external laser field, the
RDR is enteredwhen the energy radiated during one driving
laser period is of the order of or exceeds the initial electron
energy. For a plane wave laser field with carrier angular
frequency !0 and electric field amplitude E0, and for an
electron (mass m and charge�e < 0) initially counterpro-
pagating with the laser field, with initial energy "0
and momentum p0 > 0, the average energy emitted by
the electron per unit time is of the order of �m2�2

0, where

� ¼ e2 � 1=137, �0 ¼ ð"0 þ p0ÞE0=mEcr, with Ecr ¼
m2=e ¼ 1:3� 1016 V=cm being the critical field of QED
(units with @ ¼ c ¼ 1 are used throughout) [9].
Accordingly, the classical RDR is characterized by the
condition [5,8] RC � ��0�0 * 1, where �0 ¼ eE0=m!0

is the relativistic field parameter, assumed here to be much
larger than unity (present laser systems already allow for
values of �0 � 100 [10]).
The above considerations are classical. Quantum effects

become important if �0 * 1. In fact, the motion of an
ultrarelativistic electron in a laser field is quasiclassical
[11]. Quantum effects amount to the recoil experienced by
the electron in the photon emission which is of the order of
�0"0 [9]. However, quantum RR effects are not exhausted
by single-photon recoil. In fact, quantum single-photon
emission spectra at �0 � 1 turn into the corresponding
classical spectra but without RR effects included.
In the present Letter, we investigate the quantum RDR in

the interaction between an electron and an intense laser
field. We identify the quantum RR with the consecutive
photon recoils in multiple incoherent single-photon emis-
sions by the laser-driven electron, i.e., in the successive
single-photon emissions each occurring in different radia-
tion formation lengths. The quantum RDR is characterized
by the two parametric conditions: �0 * 1 and RQ �
��0 * 1. The first condition implies that the recoil in
each photon emission is, in general, significant, and it is
fully accounted for by working in the framework of strong-
field QED [9]. The second condition, instead, involves the
quantum parameter RQ and implies that the average num-

ber of photons emitted incoherently in one laser period can
be larger than unity. We employ a new, microscopic ap-
proach to describe multiple incoherent photoemissions,
alternative to the usual kinetic one [11–13], which allows
us to obtain emission spectra without solving the kinetic
partial integro-differential equations. In this approach, the
radiation process consists of multiple channels, each cor-
responding to a different number of incoherently emitted
photons. The change of the electron state is taken into
account consistently at each emission event which happens
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in a statistically uncorrelated way. This is in contrast to the
approach in Ref. [14], where the statistical character of the
photon emission is neglected. We calculate numerically
quantum emission spectra with and without the RR and
show how significantly the photon spectrum due to mul-
tiple emissions may differ from that predicted in the case of
a single emission. This can represent a possible observable
to measure RR effects in the quantum regime at optical
laser intensities of the order of 1022 W=cm2 [10].

An ultrarelativistic electron with initial four-momentum

p�
0 ¼ ð"0; 0;�p0; 0Þ ("0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

0

q
and p0 > 0) is con-

sidered to collide head-on with a plane wave characterized
by the four-vector potential A�

0 ð�Þ ¼ ð0; ẑA0fð�ÞÞ, where
� ¼ !0ðt� yÞ, A0 ¼ �E0=!0, and fð�Þ is an arbitrary
function with jf0ð�Þjmax ¼ 1 [f0ð�Þ ¼ dfð�Þ=d�]. The
external plane wave field can be taken into account exactly
by quantizing the Dirac field in the Furry picture and by
employing so-called Volkov states as electron states [9]. On
the other hand, the interaction between the Dirac field and
the photon field is taken into account perturbatively up to
first order; i.e., in each formation length, only the emission
of one photon is taken into account. If�0 & 1 (�0 � 1), the
emission probability of j photons in the same radiation

formation length is approximately �j�1 [ð��2=3
0 Þj�1] times

the probability of emission of one photon [9]; therefore, we

restrict ourselves here to �0 � 1=�3=2 � 103 [15]. In gen-
eral, it is convenient to label the particle state with initial

four-momentum p� ¼ ð";pÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
;pÞ via the

quantity p� � "� py, which is a constant of motion in

the presence of the plane wave with four-vector potential
A�
0 ð�Þ. Also, we will always consider situations in which

"0 � m�0; therefore, the transverse degrees of freedom of
the particles in the problem can be neglected and only
probabilities integrated over the transverse momenta will
be considered.We also consider probabilities averaged over
the initial electron spin and summed over the final electron
spin and the emitted photon polarization. As a starting
point, we employ the expression for the probability of one

photon emission dPð1Þ
p�=dud� by an electron with initial

four-momentum p� in the external plane wave per unit
of the laser phase � and per unit u ¼ k�=ðp� � k�Þ,
with u 2 ½0;1Þ [9]:
dPð1Þ

p�
dud�

¼ �

�
ffiffiffi
3

p m2

!0p�
1

ð1þ uÞ2
��

1þ uþ 1

1þ u

�

� K2=3

�
2u

3�ð�Þ
�
�

Z 1

2u=3�ð�Þ
dyK1=3ðyÞ

�
; (1)

where k� ¼ !� ky, with k� ¼ ð!; kÞ ¼ ðjkj; kÞ being

the four-momentum of the emitted photon, where K�ðxÞ is
the modified Bessel function of �th order and where
�ð�Þ ¼ p�jEð�Þj=mEcr, with Eð�Þ ¼ E0f

0ð�Þ being
the instantaneous electric field of the plane wave. Note
that �ð�Þ¼ ðp�=p0;�Þ�0jf0ð�Þj¼ ðp�=p0;�Þ�0ð�Þ, with
�0ð�Þ ¼ �0jf0ð�Þj. The above expression of dPð1Þ

p�=dud�

is valid in the limit of a constant crossed field when �0 � 1.
However, since in this limit the radiation formation length
of the photon production process is of the order of�0=�0 �
�0, with �0 ¼ 2�=!0 being the central wavelength of the
plane wave [9], then the same expression of the probability
can be employed for an external laser field varying in a
space scale of the order of �0 but with the instantaneous
value of the electric field strength. In this respect, the
instantaneous value p�ð�Þ at the moment of emission
should be employed in Eq. (1), but in a plane wave the
quantity p�ð�Þ is constant: p�ð�Þ � p�.
For sufficiently long and/or strong pulses, the quantity

Pð1Þ
p0;� ¼ R1

�1 d�
R1
0 dudPð1Þ

p0;�=dud� becomes larger than

unity, and it cannot be interpreted as an emission probabil-
ity. In this case, multiple incoherent photon emissions take
place; i.e., the electron emits many photons but each in a
different radiation formation length. In the classical limit of
emission of low-energy photons with respect to the initial
energy of the electron, this apparent contradiction can be
easily resolved by following the procedure developed for
the so-called ‘‘infrared catastrophe’’ (see [16]). The con-

clusion is that in the classical limit the quantity Pð1Þ
p0;� is

actually the average number of photons emitted (see also
[13]), and, therefore, it is not contradictory that it can be
larger than unity [16]. In the quantum regime we proceed
analogously by taking into account, however, that at each
photon emission step the electron incoming quantum
numbers are changed and determined by the previous step

(see Fig. 1). The total probability PðNÞ
p0;� that an electron

with initial momentum p
�
0 emits N photons incoherently

is given by PðNÞ
p0;� ¼

R½du�N
R½d��NdPð1Þ

pN�1;�=duNd�N . . .

dPð1Þ
p0;�=du1d�1, where pj;�¼pj�1;��kj¼pj�1;�=ð1þ

ujÞwith j ¼ 1; . . . ; N � 1 andwhere the notation
R½du�N �R1

0 duN
R1
0 duN�1 .. .

R1
0 du1 and

R½d��N �R1
�1d�NR�N�1d�N�1 . . .

R�2�1d�1 has been introduced. Since Volkov

states are normalized to unity, the probability of no-photon
emission is also unity at this stage. However, since the total
probability that either no photons or any number of photons

are emitted must be unity, the actual total probability P ðNÞ
p0;�

of emission of N photons should be renormalized as

P ðNÞ
p0;� ¼ PðNÞ

p0;�=N p0;� , withN p0;� ¼ 1 þ Pð1Þ
p0;� þ 	 	 	 þ

PðNÞ
p0;� þ 	 	 	 . Analogously, the probability of no photon

FIG. 1. A diagrammatic visualization of the calculation of
incoherent multiphoton emission by a laser-driven electron.
The double electron lines indicate that the electron states are
Volkov states, and the dots represent the emission of more than
two incoherent photons. At each photon emission step, the
electron incoming quantum number p� is changed and deter-
mined by the previous step.
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emission is actually 1=N p0;� . In the classical limit, i.e.,

when �0 � 1, then the main contribution to the integral in

PðNÞ
p0;� comes from the region ui � 1 for i ¼ 1; . . . ; N, the

integral in PðNÞ
p0;� becomes factorizable and we obtain the

Bloch and Nordsieck result: PðNÞ
p0;� ¼ ðPð1Þ

p0;�ÞN=N! and

N p0;� ¼ expðPð1Þ
p0;�Þ [16]. In contrast to that, in the quantum

regime the individual probabilities dPð1Þ
pj�1;�=dujd�j in

PðNÞ
p0;� are not independent from each other, because, as we

have mentioned, the initial electron momentum at each
emission is different. The effects of the RR arise here
from the fact that the emission of each photon modifies
the electron state and, consequently, the next emissions.
Note that the quasiclassical motion of the electron between
two emissions is taken into account consistently here, in the
sense that the only dynamical quantity of the electron
appearing in the equations, i.e., pj;�, does not change

between two emissions. Now we introduce the quantum
photon spectrum dSRR

Q =d$ including the RR of a photon

with k� � $p0;� emitted by an electron with initial p0;�
(for notational simplicity the index p0;� is not included in

dSRR
Q =d$):

dSRR
Q

d$
¼ $

N p0;�

�Z
½d��1

dPð1Þ
p0;�

d$d�1

þ X1

N¼2

Z
½du�N�1

�
Z
½d��N

XN

i¼1

#

�Yi�1

l¼0

1

1þ ul
�$

�

� dPð1Þ
~pN�1;�

duN�1d�N

. . .
dPð1Þ

~pi;�

duid�iþ1

dPð1Þ
~pi�1;�

d$d�i

� dPð1Þ
~pi�2;�

dui�1d�i�1

. . .
dPð1Þ

p0;�

du1d�1

�
: (2)

In this expression the ith term in the sum over i corres-
ponds to the photon with k� being emitted

at �i. In general, dPð1Þ
p�=d$d� ¼ ðp�=p0;�Þðp�=p0;� �

$Þ�2dPð1Þ
p�=dud� and $ ¼ ðp�=p0;�Þu=ð1þ uÞ< 1,

while the step function #ðxÞ ensures that the corresponding
term vanishes if the electron has not enough energy to emit
the photon with k� (u0 � 0). Furthermore, ~pj;� ¼
~pj�1;� �$p0;� [~pj;� ¼ ~pj�1;�=ð1þ ujÞ] if the jth photon
emitted is the one with k� ¼ $p0;� [kj;� ¼ ~pj�1;�uj=
ð1þ ujÞ] for j ¼ 1; . . . ; N � 1 (~p0;� ¼ p0;�). Since we

assumed that "0 � m�0, then p0;� ¼ "0 � p0;y � 2"0
and the photons are mostly emitted along the negative
y direction, i.e., k� ¼ !� ky � 2!, then the quantity

dSRR
Q =d$ is essentially the differential average energy

emitted in units of the initial electron energy. From the
above discussion it is clear that in order to be in the quantum

RR regime it must be Pð1Þ
p0;� * 1 (significant incoherent

emission of many photons during the whole laser pulse)
and �0 * 1 (non-negligible photon recoil). Starting from
Eq. (1) with p� ¼ p0;� and by performing the variable

change u0 ¼ 2u=3�0ð�Þ in Pð1Þ
p0;� , one sees that if �0 & 1,

then Pð1Þ
p0;� � �ðm2=!0p0;�Þ�0�� ¼ ��0��, where ��

is the phase interval corresponding to the pulse duration.
Correspondingly, the analogous condition of being in the
quantum RDR, i.e., RQ ¼ ��0 * 1, is obtained from the

above one by setting ��� 1 (one period corresponds
actually to �� ¼ 2�). Therefore, when the RR is not
important, i.e., when ��0�� � 1, the emitted spectrum
is given by the quantity dSnoRR

Q =d$ defined as

dSnoRR
Q =d$�$dPð1Þ

p0;�=d$�$
R½d��1dPð1Þ

p0;�=d$d�1.

Below, we compare the quantum spectra dSRR
Q =d$ and

dSno RR
Q =d$ also with the corresponding classical quanti-

ties. The expressions dSno RR
C =d$ and dSRR

C =d$ of

the classical spectrum without and with the RR can be
obtained by starting from Eq. (1) and from dSno RR

Q =d$

for an electron with initial momentum p
�
0 in the limit

k� � p0;� (see also [11]). While without the RR it is

p�ð�Þ ¼ p0;� � pno RR� ð�Þ, the analytical solution of

the LL equation found in Ref. [8] indicates that if the
RR is included, it is p�ð�Þ ¼ p0;�=hð�Þ � pRR� ð�Þ,
with hð�Þ¼ 1þð2=3ÞRC

R�
�1d�0f02ð�0Þ. Therefore, we

have dSRR=no RR
C =d$ � R½d��1dSRR=no RR

C =d$d�1, with

dSRR=no RR
C

d$d�
� $

dPð1Þ
p0;�

d$d�

��������p�¼p
RR=no RR� ð�Þ

$�1

: (3)

If one calculates classically the average energy h!i emitted
in one laser period as h!i � "0ð2�Þ�1

R
2�
0 d�R

1
0 d$dSno RR

C =d$d�, one obtains that the condition

h!i * "0 is fulfilled when RC * 1, which is the classical
RDR condition. In the classical regime, accounting for the
RR amounts essentially to subtracting at each instant of
time tþ dt, from the four-momentum of the electron at
time t, the average four-momentum that it emits as radia-
tion in the short interval dt. In contrast to that, in the
quantum regime the loss of energy and momentum by
the electron through the emission of a photon is intrinsi-
cally a probabilistic event. Only if the emission occurs
are the state of the electron and the successive emissions
modified. If one calculates h!i starting from dSnoRR

Q =d$,

one sees that quantum corrections are negative [9]; thus,
the classical ‘‘averaged’’ treatment of the RR is expected to
overestimate the effects of the RR when quantum effects
become important.
Below, we shall provide a numerical example in order to

show that, in principle, the quantum RR regime can already
be experimentally realized with presently available laser
technology. We consider the simple case of a two-cycle
sinusoidal pulse with fð�Þ ¼ � cosð�Þ and � 2 ½0; 4��.
In this case, the integrations in � in Eq. (2) can be
approximately performed analytically, and the numerical
calculation of the remaining integrals via the Monte
Carlo method becomes feasible [numerical time-
consuming Bessel functions can be avoided by employing

an alternative equivalent representation of dPð1Þ
p0;�=dud�
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as in Eq. (4.2) in [13]]. Quantum and classical spectra with
and without the RR shown in Fig. 2 clearly display differ-
ent behaviors. Since classically the emitted frequencies do
not have the meaning of photon energies, the classical
spectra allow for the unphysical emission at $ 
 1 also
in the case that the RR is taken into account. This is
forbidden quantum mechanically, and the existence of
the physical boundary$ ¼ 1 originates a typical quantum
piling-up of the radiation by an ultrarelativistic electron
towards$ ¼ 1. Inclusion of the RR in the quantum regime
has mainly three effects: (i) increase of the spectral yield at
low energies, (ii) shift to lower energies of the maximum of
the spectral yield, and (iii) decrease of the spectral yield at
high energies. The physical reason is that, due to the RR,
the electron loses its energy by emitting several relatively
low-energy photons, and the probability of emitting one
photon in the region very close to $ � 1 is less than if the
RR is neglected. Figure 2 also shows that the classical
treatment of the RR (short dashed, blue curve) artificially
enhances the above three effects of the RR, and, as we have
mentioned, this is mainly due to the classical overestima-
tion of the average energy emitted by the electron. Finally,
in Fig. 2, emission of up to 16 photons is taken into
account, implying the numerical integration of up to
15-fold integrals, the remaining higher-order terms having
been estimated to give a contribution of about 2%.

Here we have not considered the exact space-time shape
of the laser field. It is, however, clear from the above
physical considerations that the laser’s pulse shape will
not change qualitatively our predictions. Concerning the
observability of the discussed effect, one could expect that
the emitted photons, by interacting again with the laser
field, might create an electron-positron pair and start a
cascade process [17]. However, from Fig. 2 we see that

the photon spectrum dSRR
Q =d$ has a peak at $0 � 0:04.

The probability of pair creation by a created photon with a
given $ is roughly suppressed by a factor of 	ð$Þ ¼
exp½�8=3�
ð$Þ�, with �
ð$Þ ¼ $�0 assumed to be

much smaller than unity [9]. Since in the numerical example
�0 ¼ 1:8, it is �
ð$0Þ ¼ 0:073 and 	ð$0Þ � 10�16. Thus,

we can conclude that most of the created photons, at not too
large$’s, will escape the laser pulse and reach the detector.
Finally, we have calculated from Fig. 2 that about 1:74�
0:17 and 1.00 photons are expected to be emitted at 10�5 <
$< 10�3 (corresponding to photon energies between
10 keV and 1 MeV) per electron with and without the RR,
respectively, amounting to a relative difference of about
ð43� 11Þ% [note that for this example substantial devia-
tions from Eq. (1) according to Ref. [18] and consequently
from the estimated photon yields apply only at$< 10�8].
This and the fact that laser intensities and electron energies
considered above arewithin the reach of present technology
allow, in principle, for experimental measurement of the
quantum RR effects with an all-optical experiment exploit-
ing electron wake-field acceleration [10,19].
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