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Texture Control in a Pseudospin Bose-Einstein Condensate
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We describe a wave function engineering approach to the formation of textures in nonrotated
multicomponent Bose-Einstein condensates. With numerical simulations of a viable two-component
condensate experiment, we demonstrate the formation of a ballistically expanding regular lattice texture,
composed of half-quantum vortices and spin-2 textures. The formation is described by a linear
interference process in which the geometry and phase of three initially separated wave packets provide

deterministic control over the resulting lattice texture.
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Topological spin textures arise in magnetic materials [1],
in director fields of liquid crystals [2], in field theoretic
models of particles [3], and in models of the early Universe
[4]. Multicomponent Bose-Einstein condensates (BECs)
may act as analogues of these and other condensed matter
systems, enabling the study of phenomena that may be
otherwise inaccessible to experimental investigation.

Bulk rotation of scalar (single-component) BECs pro-
vides one method for creating a regular lattice of quantized
vortices. The additional spin freedom in rotating multicom-
ponent BECs suggests the existence of related spin lat-
tice textures, which are indeed observed [5]. Experimental
production of isolated textures has been demonstrated
within pseudospin-%, spin-1, and spin-2 BECs [6-8].

In this Letter we describe a complementary method for
the controlled production of a lattice texture in a multicom-
ponent BEC, which forgoes bulk rotation of the condensate
by instead exploiting interference to produce expanding
lattices of singly quantized vortices in any or all compo-
nents. An advantage of this method is that the textures
comprising the motif may be directly determined by the
vortex-lattice alignment, which depends on the controllable
wave packet phases. Isolated textures could be optically
retrapped once created by this process.

Nonrotated = single-component BECs accommodate
regular vortex lattices, created by a three-wave linear
interference process [9]. In this scenario, three initially
separated BEC wave packets expand and interfere, in an
analogous process to a Young’s three-pinhole interferome-
ter [10]. When the initial wave packets are arranged at
the corners of an equilateral triangle, the resulting lattice
has honeycomb symmetry and can be thought of as a
dynamically expanding hexagonal lattice containing unit-
charge vortices of one circulation, interleaved with a sec-
ond similar lattice of vortices with opposite circulation. It
is probable that such honeycomb vortex-antivortex (VA)
lattices have been experimentally generated in BECs,
although this has neither been recognized nor verified
directly—see [11,12]. The initial wave packet phases es-
tablish particular xy translations of the resulting 2D VA
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lattices [9]. By engineering the initial wave packets in a
two-component BEC, we exploit this phase dependence to
produce VA lattices within each component of a two-
component BEC, aligning them to form the dynam-
ically expanding lattice texture. In the example in Fig. 1,
the position-dependent state is represented by local Bloch
vectors, which project the state onto the surface of a unit
Bloch sphere (Fig. 1 inset).

Although a rotating BEC is extended in three spatial
dimensions, its resident vortex lattice is primarily 2D in
nature, which restricts the topology of any associated tex-
ture. The VA lattice is similarly 2D in nature, because the
three initial wave packet locations together define a plane.
In both cases, axial absorption imaging captures the 2D
structure by projecting the density parallel to the vortex core
axes. The simplest texture arises when a vortex in one
component coincides with a vortex-free region in the sec-
ond component to create a half-quantum vortex (HQV)
[13], which is a counterpart to the Alice string in particle
physics [14]; its detection in *He -A is sought as evidence of
a spin triplet superconducting state in Sr,RuO, [15].
Another example, of relevance here, corresponds to a vortex
in one component aligned with a vortex of opposite circu-
lation in the second component. This texture may be
thought of as a lower dimensional counterpart to the *“‘spin

FIG. 1 (color online). A planar lattice texture is created by the
interference of a pseudospin—% BEC initially separated into three
pieces. The hexagonal lattice, visualized with Bloch vectors in
this numerical simulation, has a motif containing three textures:
one half-quantum vortex of each sign and a spin-2 texture.
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vortex” that arises spontaneously in quenched 8’Rb spinor
condensates [16]. Additional textures in 2D geometries
include baby skyrmions [17], merons [18], and planar
spin textures [19], whose study has led to insights in
reduced-dimensional superfluid or ferromagnetic systems,
such as in the case of the quantum Hall effect [20]. We
describe a mechanism of lattice-texture formation that ex-
tends to three or more arbitrarily located spatially separated
spinor BEC pieces with arbitrary initial coherent phases.
The mechanism operates in limits where linear interference
applies, i.e., when the kinetic energy term dominates the
self-interaction term in the Hamiltonian. In this case, the
long-range effect of initial coherent wave packet phases
establishes the required local phase relationship for vortex
production at points in a lattice. This may be contrasted with
the Kibble-Zurek (KZ) mechanism [21], in which vortices
are created by phase windings generated in neighboring
domains by quenching through a phase transition.

In the following, we present simulations of a proposed
experiment to generate the lattice texture via the interfer-
ence of a nonrotating pseudospin—% BEC, initially divided
into three pieces. Although it is possible to fully control the
piece phases and resulting textures, we present a simplified
experiment in which the phases are fixed. A planar hex-
agonal lattice-texture results, with a motif composed of
three textures: one HQV of each sign and a spin-2 texture.
We classify these textures by their topologies, and present a
lattice model whose time-dependent growth is related to
the initial BEC geometry.

We numerically model a two-level ¥Rb BEC system
with |[F =1, mp=—1)=|1) and |F =2, mp = +1) =
|2) using a mean-field approach. These hyperfine states
and their coupling behavior have been well studied [22,23]
and are convenient for the study of pseudospin—% conden-
sates. We performed 2D simulations, corresponding to
pancake condensates. This geometry has the advantage
that axial ballistic expansion is rapid, due to the initial
tight axial confinement. Nonlinear effects, which might
otherwise lead to distortion of any lattice and curvature
or reconnection of vortex lines, are consequently short-
lived. The order parameter field of a single-species BEC
whose atoms occupy two internal hyperfine levels is a
position-dependent two-component pseudospinor W (r) =
(W, (r), W,(r)), where r is a position vector [24]. The
dynamical evolution of the BEC is governed by two
coupled Gross-Pitaevskii Equations (GPEs):
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where ¥, is the 2D order parameter of component |i) and
Vﬁ_ is a 2D Laplacian. The self-interaction parameter
Uijj = 47Th2a,~j/ m depends on the intra- and intercompo-
nent s-wave scattering lengths a;; and the mass m of an
atom of the condensed species; there are three independent

scattering lengths, since a;, = a,;. A time-dependent
factor I'(¢) results from the reduction from 3D to 2D,
as described below. The normalization condition is
Y. [|W;|>dr = N, where the total number of atoms N is
preserved independently of the internal spin state.

We use the state-dependent scattering lengths of
Mertes et al. [23]: a;; =100.40a,, a,, =95.00a,, and
ar; = app = 97.66a,, where a, is the Bohr radius. The
condensate contains N = 50000 atoms of 3’Rb, each of
mass m = 1.4188 X 10~ 2°kg. This relatively small popu-
lation was chosen to minimize nonlinear perturbative ef-
fects and maximize lattice regularity.

Initially the BEC is tightly trapped in the axial direction,
producing a pancake geometry, and further divided into
three pieces by trapping within three transverse Gaussian
potential wells, such as would be formed by three red-
detuned lasers. The initial equilibrium condensate profile is
established with all atoms in |1) by numerically evolving
Eq. (1) through imaginary time. In simulations, the nu-
merical procedure establishes a uniform phase (¢, =
@, = @3) for the wave packets, which fixes the translation
of the resulting lattice texture. However, in typical experi-
ments the initial wave packet phases are random, resulting
in the lattice being randomly translated. Therefore, in an
experiment, both components must be imaged simulta-
neously to correctly reconstruct the lattice-texture struc-
ture. This might be performed by dual state imaging [25] or
by minimally destructive phase contrast imaging [26].

Having established the initial profile, we immediately
remove all trap potentials V; at t = 0. We account for
ballistic expansion along the axial direction by assuming
each piece to be a noninteracting gas with a Gaussian axial
profile. Upon trap removal, the resulting rapid axial
expansion and associated decrease in nonlinear coupling
are modeled by TI'(r) =[mw/Q2uh)]'/2(1 + rrw?) "1/,
where w is the angular frequency of the axial harmonic
trap initially confining the condensate. We use w =
500 rads~!, corresponding to a pancake geometry.

We simulate the application of a two-photon /2 pulse
to excite half the atoms to |2) (Fig. 2). This models an
optical process involving two lasers, coupling |1) and |2)
via an intermediate level. The 77/2 pulse may be applied
either immediately before or after trap removal. The over-
all translation of each VA lattice depends only on the
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FIG. 2 (color online). 3’Rb hyperfine levels |F=1,mp=—1)=
[1) and |F =2, mp = +1) =[2) are optically coupled with
Gaussian and Laguerre-Gauss (LG) lasers, whose intensity pro-
files are shown. The LGf:}) phase is also shown winding from

—ar (black) to + 7 (white).
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FIG. 3 (color online). Numerical simulations of a two-
component three-piece BEC generate vortex-antivortex lattices
as the wave packets expand and interfere. For the initial phases
shown, the lattices align as is evident in Fig. 4(a).

relative phases of the initial wave packets [9]. Although
intracomponent phases are uncontrolled in typical experi-
ments, full control over the intercomponent phase may be
realized by spatially localized Raman beam pairs focused
on each wave packet. Atoms excited to |2) thereby acquire
relative phases that produce a lattice which is predictably
aligned with the lattice in |1), enabling production of
a continuum of related lattice textures. In our simplified
example, we instead employ a Laguerre-Gauss LGf}Z})

mode in one of the coupling beams to establish wave
packet phases ¢; + Agp —27/3, ¢, + A, and ¢5 +
A + 27/3 for atoms in |2) [27]. The phase offset Ag
has no effect on lattice translation [9]. The LG beam wave
front confers phase gradients on each wave packet in [2).
Any effects of this nonuniformity are minimized due to the
initial tight transverse confinement.

The BEC then evolves governed by Eq. (1), resulting in
the axially projected probability densities |'¥;|> shown in
Fig. 3. A honeycomb VA lattice is formed in each compo-
nent, resulting from interference of the expanding wave
packets. The equal initial phases (¢; = ¢, = ¢3) produce
the particular lattice translations shown. The final frame
of this figure shows individual components |W¥,|> at
t = 43 ms, corresponding to the lattice texture in Fig. 1.

We now consider the three textures that combine in the
motif of Fig. 1, corresponding to alignments of vortices in
Fig. 4(a). We examine these textures in more detail in
Fig. 5, using simulations at t = 69 ms. Vortex and anti-
vortex locations in each component are identified in
Fig. 5(a). Because textures extend over a local neighbor-
hood of the field, we specify three circular bounded re-
gions, labeled (i), (ii), and (iii), centered on the vortex
cores. Each boundary lies approximately halfway to the
nearest neighboring vortex core. The same boundaries are
shown in Fig. 5(b), which plots the field of Bloch vectors
with lengths scaled by local density, and identifies the three
texture types. In crystallographic terms, the three textures
constitute a motif, within a hexagonal lattice.

Region (i) in Fig. 5 corresponds to a spin-2 texture
with zero net mass current, associated with two constituent
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FIG. 4. (a) Lattices containing vortices (white circles) and
antivortices (black circles) form in components ¥, and W,.
Three combinations form different textures in ¥ = (¥, V,).
Gray circles indicate an aligned vortex and antivortex in the two
components. (b) Wave packets with centers given by r; = 0, r»,
r; have relative phases 0, ¢,, ¢3, respectively. The resulting
vortex-antivortex lattice basis vectors are r and rg, with a motif

containing a vortex and antivortex separated by r(. Fringe
spacing f is a convenient measure of unit cell size.

unit-charge vortices of opposite sign that reside in different
components. In traversing a small closed contour about the
vortex core in Fig. 5(b) once, vector projections wrap the
Bloch sphere twice near the equator, with winding number
2. As contours of larger radius are traversed, the projections
deviate from the equator toward the Bloch sphere poles.
This texture is similar to spin textures described elsewhere
in a 2D spin system [19] and in three-component spin
textures [16].

Regions (ii) and (iii) in Fig. 5 are centered on a vortex in
one or other of the components. These correspond to
HQVs. The Bloch vectors within these regions cover the
Bloch sphere hemisphere corresponding to the sign of
the HQV. As the lattice expands, projections of vectors
on the boundary approach the Bloch sphere equator. An
HQV has wrapping number 1 for a hemispherical order
parameter space, associated with its constituent unit-
charge vortex. It covers a 27 solid angle and is thus a
27 defect whose sign depends on both the vortex sign and
its resident component. Similarly, boundary projections of
the spin-2 texture asymptotically approach Bloch-sphere
lines of longitude. If these boundaries are ‘“‘healed,” the
sphere has wrapping number 2 and the texture is identifi-
able as an 87 defect.

Having discussed the topology of the isolated textures,
we now describe the lattice texture. The isolated textures
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FIG. 5 (color online). Three texture types within the motif: (i)
a spin-2 defect, (ii) a (+) HQV, and (iii) a (—) HQV. (a) Vortex
(v) and antivortex (av) cores are overlaid on a map of [ W, W,].
(b) Bloch vectors are shown normalized to (‘If% + ‘If%)l/ 2,
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expand along with the evolving lattice according to pre-
viously described expressions for vortex core locations in
a model of interfering Gaussian wave packets [9]. For
vortices to be produced by interference, the contributions
from each expanding packet must be approximately equal.
This establishes a spatiotemporal condition, which limits
lattice extent and describes its growth by vortex formation
at the boundary of an expanding circular envelope [9]. This
envelope expands within a second expanding envelope that
defines the extent of the BEC cloud, associated with a
threshold density of the condensate tail. Two-source inter-
ference fringes are visible in the annular region between
these envelopes (Fig. 3 at 4 ms).

By evaluating the locations of two adjacent vortices of
the same sign within the inner envelope, we find that the
lattice basis vectors [Fig. 4(b)] have lengths

Irh| = 77/(r;a sind), Ir}| = 7/(rya sing), (2)

where r; = |r;| are the source spacings, and 6 is the
interior angle at the origin of the triangle of wave packets
[Fig. 4(b)]. These expressions depend linearly on a time-
dependent lattice scaling factor a = mht/[2(ht)* +
2m?(h/Ap)*], which assumes that the packets share a
single initial momentum uncertainty Ap; i.e., are all of
equal initial size. Because the lattice growth in this linear
model is independent of condensate density, vortex lines
remain straight and parallel despite any density anisotropy
arising from ballistic expansion along their length. The
distance f in Fig. 4(b) corresponds to the bright fringe
spacing, measured experimentally by Henderson et al
[12]. For r=r,=r; and 0 = @/3, f=[r}\/3/2=
7r/(rar). The spacing of adjacent vortices and antivortices
in the VA lattice is

lej| = 7(r3 + 2ryr3c080 + 13)'/2/(3ryrsacsing).  (3)

If r=ry,=ryand § = 7/3, then [rj| = 27/(3ra).

We have shown with numerical simulations that a
lattice texture forms in a nonrotated two-component BEC,
initially separated into three pieces, and subsequently al-
lowed to expand and interfere. We created an expanding
hexagonal lattice texture by employing spatiotemporal
wave function engineering to determine specific relative
phases of the initial pieces and arrange them at the corners
of an equilateral triangle. By employing a Laguerre-Gauss
beam in the phase-engineering task, the lattice was created
with a motif composed of two half-quantum vortices of
opposite signs and one spin-2 texture, both being relevant
examples in related condensed matter systems. More gen-
erally, the method extends to deterministic production of
related lattice textures. Whereas initially positioning the
pieces to form an equilateral triangle generates a honey-
comb lattice, different (triangular) arrangements may gen-
erate other geometries, including rectangular lattices from
right triangles. The textures in the motif decorating this
lattice are composed of singly quantized vortices arranged
deterministically within a bounded region of comparable

size to the lattice parameter, in any or all components of a
multicomponent BEC. The method may be applied to
produce higher order textures by considering additional
components not spin coupled to the existing states.
Related textures will be produced in spinor condensates,
in which the states within a single manifold are populated
and spin-spin interactions are considered.
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