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We study the off-equilibrium dynamics of the infinite-dimensional Bose-Hubbard model after a

quantum quench. The dynamics can be analyzed exactly by mapping it to an effective Newtonian

evolution. For integer filling, we find a dynamical transition separating regimes of small and large

quantum quenches starting from the superfluid state. This transition is very similar to the one found for the

fermionic Hubbard model by mean field approximations.
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Significant advances in the field of ultracold atoms have
allowed one to engineer quantum many-body systems in
almost perfect isolation from the environment. Thanks to
the ability to rapidly tune different parameters, e.g., the
interaction strength between the atoms or the creation of
controlled excitations, the realm of nonequilibrium many-
body physics of (almost) isolated quantum systems has
thus been accessed and can now be studied experimentally.
For example, Greiner et al. [1] studied the dynamics of
interacting bosons loaded on an optical lattice. The physics
of this system is well captured by the Bose-Hubbard
model. By changing the intensity of the lasers, one can
effectively tune the parameters in the corresponding Bose-
Hubbard model. Rapid changes induce interesting non-
equilibrium dynamics [1]. The activity in this field is
booming: Several new experiments have been performed,
including on fermionic systems [2,3]; questions about
thermalization [4,5], its absence [6–8], and quantum dy-
namical phase transitions out of equilibrium [9,10] are
currently addressed.

A protocol inducing an off-equilibrium dynamics, which
has received a lot of attention recently, is the so-called
quantum quench. It corresponds to preparing the system in

the ground state of the Hamiltonian Ĥi, to changing sud-
denly at time t ¼ 0 a parameter of the Hamiltonian, for
example, the interaction strength, and then letting the

system evolve with the new Hamiltonian Ĥf. Several

studies have been performed for the Bose-Hubbard model,
which as discussed above is relevant for experiments.
There have been numerical analyses of one-dimensional
systems by exact diagonalization and time-dependent den-
sity matrix renormalization group theory [4,5,7,8]. The
saddle point approximation [11], Gross-Pitaevskii equa-
tions [12], and the Gutzwiller approximation [13,14]
have been used to analyze higher-dimensional and realistic
cases. The fermionic Hubbard model has also been studied
by mean field theories recently [9,10]. In this work we
present a complete analysis of quantum quenches in the
Bose-Hubbard model (BHM) in the limit of infinite dimen-
sions. The advantage of this limit is that the model can then

be analyzed exactly even out of equilibrium. Its solution at
equilibrium played an important role in determining the
phase diagram and the properties of the Mott-superfluid
quantum phase transition of the three-dimensional BHM
[15]. Studying its off-equilibrium dynamics is therefore a
natural route to follow. We will discuss in the conclusion
the limitations of this approach and possible extensions. To
obtain a well-defined infinite-dimensional limit, one has
to scale the hopping amplitude as one over the dimension
d [16]. A complementary but in the bosonic case identical
procedure [17], which we will follow for simplicity, con-
sists in focusing from the start on the BHM defined on a
completely connected lattice. The corresponding
Hamiltonian reads

Ĥ ¼ � J

V

X
i�j

b̂yj b̂i þ
U

2

X
i

n̂iðn̂i � 1Þ; (1)

where b̂yi and b̂i are the bosonic creation and annihilation

operators, respectively, n̂i ¼ b̂yi b̂i the occupation operator,
and V the total number of sites. In the following we take
J ¼ 1 and measure U in units of J and the time in units of
J=@. We shall study off-equilibrium dynamics induced by
quantum quenches corresponding to a sudden change of
the interaction strength from Ui to Uf at t ¼ 0. Since H is

invariant under any permutation of sites, all eigenstates can
be classified in terms of the corresponding symmetry
classes. In particular, the ground state, whether Mott or
superfluid, corresponds to a completely site permutation
symmetric wave function. Since the time-dependent wave
function also remains completely symmetric after the
quench, one can restrict the analysis to the subspace of
completely symmetric states. It is easy to convince oneself
that these states can be parametrized by the fraction
x0; x1; x2; . . . of sites with 0; 1; 2; . . . bosons and that they
correspond to the flat normalized sum of all Fock states
characterized by Vxi sites with i bosons per site. In order to
simplify the presentation, let us first focus on the simplified
model where a maximum of two bosons per site are
allowed (nb ¼ 2). We shall discuss later the generalization
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to any value of nb. Since x0 þ x1 þ x2 ¼ 1 for nb ¼ 2 and
because the number of particles Vðx1 þ 2x2Þ is conserved
by the dynamics, a generic symmetric state is identified by
x1 only and can be denoted jx1i (henceforth we will drop
the subindex 1). The evolution of the wave function jc i ¼P

xc xjxi is determined by the equation hxji@t
P

x0c x0 jx0i ¼
hxjĤP

x0 c x0 jx0i. In this model, all matrix elements

hxjĤjx0i are zero except hxjĤjx� 2=Vi and the diagonal

term hxjĤjxi; the former corresponds to the physical pro-
cess of one boson jumping from one site to another. The
resulting Schrödinger equation for c x reads

1

V
i@tc x ¼ DðxÞc x �WðxÞðc xþ2=V þ c x�2=VÞ

¼ ½DðxÞ � 2WðxÞ coshð2@x=VÞ�c x

¼ ½DðxÞ � 2WðxÞ cosð2p̂Þ�c x; (2)

where WðxÞ ¼ x½ð2� x� nÞðn� xÞ=2�1=2, DðxÞ ¼
Uðn� xÞ=2� xð2þ n� 3xÞ=2, n is the number of bosons
per site, and subleading contributions in 1=V have been
dropped. The initial wave function, which is the ground state

at couplingUi, is a wave packet of width 1=
ffiffiffiffi
V

p
; see [18] and

below. Since 1=V plays the role of @ in (2), the thermody-
namic limit corresponds to the classical limit. As a conse-
quence, the time evolution of the average particle position
xðtÞ ¼ hx̂i and momentum pðtÞ ¼ hp̂i ¼ h�i@x=Vi is given
by the Newton equations for the Hamiltonian H ¼ DðxÞ �
2WðxÞ cosð2pÞ, where xðtÞ and pðtÞ are classical canonical
variables. The validity of this argument can be thoroughly
established by a direct analysis [18]. In particular, one can

show that on time scales less than
ffiffiffiffi
V

p
, c xðtÞ�

expfV½x� xðtÞ�2=2�ðtÞ2 þ iVpðtÞxg; i.e., it is a sharp
wave packet, centered at xðtÞ, of width of the order of

1=
ffiffiffiffi
V

p
and has a very fast oscillating phase eiVpðtÞx, where

xðtÞ and pðtÞ are the classical canonical variables defined
above. In the following we will repeatedly make use of this
mapping to a classical system. Similar mappings have been
recently used in Refs. [10,19,20]. The first useful conse-
quence is that the ground state is obtained, minimizing H
with respect to p and x; the corresponding p is actually
always zero; as a consequence, the ground state is obtained
by the value of x minimizing DðxÞ � 2WðxÞ. The phase
diagram is similar to the one derived by Fisher et al. [16]
except that there is only one Mott lobe corresponding to
n ¼ 1. As we shall see, it is at integer filling n ¼ 1, where
the Mott state exists, that the off-equilibrium dynamics is
most interesting. We shall consider this case first, for which
the ground state (GS) corresponds to

xGS ¼
�
1 if U � Uc; Mott insulator GS
ðU=Uc þ 1Þ=2 if U <Uc; superfluid GS;

with Uc ¼ 3þ 2
ffiffiffi
2

p
. In this simple model, the condensate

fraction j�0j2 is simply equal to 1
V2

P
i�jb

y
j bi, which up to a

sign coincides with the average value of the (intensive)

kinetic energy. This can be easily obtained by subtracting
the average value of the interaction term to the total energy
and reads, for the ground state, j�0j2 ¼ xGSð1� xGSÞUc=2.
Let us now consider quenches starting from a superfluid

ground state and increasing the value ofU fromUi toUf. A

small increase ofU leads to oscillations of x andp as can be
verified analytically and checked numerically; see Fig. 2(a).
The turning points of xðtÞ, determined by _x ¼ 4WðxÞ�
sinð2pÞ ¼ 0, correspond to p ¼ 0. Actually, there would
be the possibility to have p ¼ n�=2, too. However, a p
starting from zero and reaching the value�=2would imply,
by energy conservation, a value of x at the turning point such
that E ¼ DðxÞ þ 2WðxÞ, where E is the energy after the
quench. This equation has no solution for small quenches as
shown graphically in Fig. 1; see case A. It starts to have a
solution for larger quenches, when E becomes positive
(cases B and C in Fig. 1). Actually, Ed ¼ 0 corresponds to
a dynamical transition: For E< Ed the momentum pðtÞ is
bounded, whereas for E> Ed it grows infinitely large. The
conditionE ¼ 0 depends onUi andUf. One finds that for a

given Ui the corresponding critical value is Ud
fðUiÞ ¼

ðUi þUcÞ=2. Approaching Ud
f , the period of oscillation

increases and diverges as � ¼ �c�1 lnðjUf �Ud
fjÞ, where

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUc �UfÞðUf � 1=UcÞ

q
. Figure 2 shows the typical

time evolution of x, j�0j2, and p for the three cases A, B,
and C. Exactly at Ud

f , the system relaxes exponentially to

the Mott state with a rate c. Approaching the transition, the
system spends most of the time close to the Mott state, and
therefore the time-averaged condensate fraction vanishes at
Ud

f in a singular way, proportional to 1=�. This singularity is

related to the fact that the Mott state is ‘‘absorbing’’:
Classical trajectories falling into it cannot escape, and the
period � diverges when approaching Ud

f . Conversely, tra-

jectories starting from the Mott state remain stuck to x ¼ 1
on large times t� logV. This is, however, a peculiarity of
the infinite-dimensional limit; for a finite-dimensional sys-
tem, spatial fluctuationswill drive the system away from the
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FIG. 1. Graphical solution for the value of p at the turning
points. The trajectories are full lines, and the position at t ¼ 0 is
indicated by a circle for the three trajectories A, B, and C. In case
A it is impossible to have a turning point at p ¼ �=2. Case B
corresponds to the dynamical transition and C to unbounded
evolution of p. A, B, and C are plotted in Fig. 2.
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Mott state [21,22]. In Fig. 3(a), as an example of singular
behavior, we show j�0j2 as a function of Uf for quenches

starting from the noninteracting caseUi ¼ 0. Moreover, we
compare j�0j2 to its microcanonical average at the same
energy. Clearly, the system is not thermalized. At Ud

f the

condensate fraction goes to zero after the quench, whereas
the corresponding equilibrium state is still superfluid. The
dynamical phase diagram in Fig. 3(b) summarizes our
analysis for all kinds of quantum quenches [23]. Let us
finally address the changes in the dynamical behavior
when one quenches for noninteger filling. Since the absorb-
ing Mott state disappears for n � 1, it is natural to expect,
as indeed we find, that going away from n ¼ 1 the dynami-
cal transition disappears, too, and transmutes into a cross-
over that becomes more and more sharp approaching
integer filling. Overall, the resulting physical picture is
extremely similar to the one obtained recently for the fer-
mionic Hubbard model by a time-dependent Gutzwiller
approximation [10].

Clearly, a natural question is how much these results
depend on the constraint of a maximum of two bosons per

site. A complete analysis with an arbitrary number of
bosons nb is very involved. The mapping to a classical
system works also in this case. The classical degrees of
freedom are the first nb � 1 fractions x0; x1; . . . ; xnb�1 and

their associated canonical momenta. Unlike in the case
nb ¼ 2 where the classical motion is one-dimensional,
these trajectories are no longer necessarily periodic. In
order to study their regularity we have computed numeri-
cally for nb ¼ 3 the largest Lyapunov exponent � [25] of
several trajectories. In this case x1 and x2 are the classical
variables, and the expression of the Hamiltonian can be
found in Ref. [18]. Depending on the initial condition, we
find large values (� > 0:1) characteristic of chaotic trajec-
tories for large quenches and small, possibly zero, values
characteristic of periodic or quasiperiodic trajectories for
small quenches. We find again a dynamical transition, for
n ¼ 1 and n ¼ 2, which are the only fillings for which the
Mott ground state exists. At the transition line, the trajec-
tories are chaotic. As in the previous case, the dynamical
transition corresponds to a change in the form of the phase
space trajectories: For Uf > Ud

f the momentum 2p1 � p2

becomes unbounded; see Fig. 4(a). The time evolution of
the xiðtÞ is also similar and characterized by oscillations
that take place on longer time scales close to the transition.
Moreover, the qualitative evolution of the time-averaged
j�0j2 (and also xi) with Uf for a given Ui resembles very

much the one for nb ¼ 2. We have also analyzed higher
values of nb up to nb ¼ 5 finding qualitatively and quanti-
tatively similar results. Actually, the evolution of hj�0j2i
depends very little on nb for nb > 2 as shown in Fig. 4(b)
(the two curves nb ¼ 4 and nb ¼ 5 differ by less than
0.01%). The only issue that remains open is the form of
the singularity at the dynamical transition for nb > 2.
Numerical solutions of the Newton equation are not precise
enough to answer this question. Even in the case of two
bosons per site, for which we know that j�0j2 ¼ 0 at the
transition and the singularity is logarithmic, numerics
alone would not be conclusive. For nb ¼ 2 the singularity
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FIG. 3. (a) Evolution of the time average (continuous line) and
microcanonical average (dashed line) of hj�0j2i as a function of
Uf for Ui ¼ 0. (b) Dynamical phase diagram for the model with

a maximum of two bosons per site. Quenches from the Mott
phase are not considered. Quenches from the superfluid phase
are oscillating and similar to A or C. The dynamical transition
separating the two is displayed as a dashed line; it meets the Mott
phase at Uf ¼ Uc. The phase diagram for the case of more than

two bosons per site is qualitatively similar.
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where Uf is varied). Case B corresponds to the transition point.
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was due to the fact that trajectories spend most of the time
close to the Mott state. For nb > 2, it is not clear whether
trajectories starting with the same energy as the Mott state
(energy zero) have to go arbitrarily close to it. Assuming
that the classical dynamics is completely ergodic on the
E ¼ 0 hypersurface, one could argue that this should be the
case. However, even in this case, time averages would not
coincide with averages in the Mott state unless the recur-
rence time is of the same order as the trapping time, a
difficult question to address. The conclusion of the analysis
performed for a higher number of bosons is that the results
for nb ¼ 2 are robust and expected to hold also for the
BHM with an arbitrary number of bosons per site, except
possibly the form of the singularity of j�0j2 (and of the
other observables).

Let us now discuss the implications and the limitations
of our findings. Clearly, the infinite-dimensional limit ne-
glects important dynamical and spatial fluctuations. This is
manifest from the nondamped oscillatory evolution in time
of the observables and the absence of thermalization.
Certainly, 1=d corrections must be taken into account to
lead to decoherence and thermalization. Nevertheless, we
expect that our mean field approach should be able to
qualitatively account for the short time dynamical behav-
ior. As a consequence, the dynamical transition we find
should transmute into a crossover in the short time dynam-
ics for finite-dimensional systems. Indeed, results obtained
for the one-dimensional BHM seem to be in agreement
with our findings [26]. Moreover, we expect the dynamical
transition we found to be quite general, at least within
mean field treatments of the off-equilibrium dynamics.
Actually, it is qualitatively identical to the one found for
the fermionic Hubbard model within the Gutzwiller ap-
proximation [10] and very similar to the one obtained by
out of equilibrium dynamical mean field theory [9], where
some dynamical fluctuations are taken into account.

Including spatial and dynamical fluctuations would al-
low one to go beyond our mean field treatment. A good
description of decoherence and thermalization for the
BHM could be obtained in the future within a real time
generalization of the equilibrium bosonic dynamical mean
field theory [27,28].
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