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We study the computational capacity of a model neuron, the tempotron, which classifies sequences of

spikes by linear-threshold operations. We use statistical mechanics and extreme value theory to derive the

capacity of the system in random classification tasks. In contrast with its static analog, the perceptron, the

tempotron’s solutions space consists of a large number of small clusters of weight vectors. The capacity of

the system per synapse is finite in the large size limit and weakly diverges with the stimulus duration

relative to the membrane and synaptic time constants.
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Neural network models of supervised learning are usu-
ally concerned with processing static spatial patterns of
intensities. A famous example is the perceptron, a model
for learning in a single-layer binary neuron [1,2]. However,
inmost neuronal systems, neural activities are in the form of
a time series of spikes. Furthermore, stimulus representa-
tions in some sensory systems are characterized by a small
number of precisely timed spikes [3,4], suggesting that the
brain possesses machinery for extracting information em-
bedded in the timings of spikes, not only in their overall rate.
Thus, understanding the power and limitations of spike-
timing-based computation and learning is of fundamental
importance in computational neuroscience. Gütig and
Sompolinsky [5] have recently suggested a simple model,
the tempotron, for decoding information embedded in
spatio-temporal spike patterns. The tempotron is an inte-
grate and fire (IF) neuron, withN input synapses of strength
!i, i ¼ 1; . . . ; N. Each input pattern is represented by N
sequences of spikes, where the spike timings for the afferent
i are denoted by ftig. The membrane potential is given by

UðtÞ ¼ XN
i¼1

!i

X
ti<t

uðt� tiÞ; (1)

where uðtÞ denotes a fixed causal temporal kernel. An ex-

ample is the difference of exponentials form: uðtÞ ¼
u0ðe�ðt=�mÞ � e�ðt=�sÞÞ, where �m and �s correspond, respec-
tively, to the membrane and synaptic time constants [6]. The
tempotron fires a spike whenever U crosses the threshold,
Uth, from below [7] [Fig. 1(a)]. The tempotron performs a
binary classification of its input patterns by firing one ormore
output spikes when presented with a ‘‘target’’ (þ 1) pattern
and remaining quiescent during a ‘‘null’’ (� 1) pattern.

In this Letter we present a theoretical study of the
computational power of the tempotron. We focus on the
standard task of classifying a batch of P ¼ �N random

patterns, where � denotes the number of patterns per input
synapse. For each pattern, the timings of the input spikes
from each input neuron are randomly chosen from
independent Poisson processes with a rate 1

T , where T is

the duration of the input patterns, and the desired output,
y ¼ �1, is randomly and independently chosen with equal
probabilities. A solution to the classification problem is a
set of synaptic weights f!ig that yields a correct classifi-
cation of all P patterns. We will address several fundamen-
tal questions. First, in [5] the capacity of IF neurons was
studied using numerical simulations based on a simple
error-correcting online learning algorithm. The capacity
is defined as the maximum number of patterns per synapse,
�c, that can be correctly classified, with a probability
approaching 1 for large N. These simulations suggest
that the capacity is independent of the number of input
synapses; however, an analytical proof for this property has
been lacking. Second, it is important to understand how the
computational capabilities of the neuron depend on the

FIG. 1. (a) Example of voltage traces UðtÞ. (b) Probability
density of the rescaled maximal potential x as defined in
Eq. (4) with a fitted scale factor �. (c) Probability of Nspikes.

The line in (b) is a standard Gumbel law. In (c) circles indicate
the theoretical Poisson law. Data were measured with K ¼ 400,
� ¼ 1:68, N ¼ 500, and 34 samples.
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various time scales in the dynamics of the system. Finally,
our study highlights the complex geometric structure of the
space of solutions for �< �c, similar to the one arising in
other hard computational problems, such as learning in
multilayered neural networks [8] or random combinatorial
optimization [9,10].

Our theoretical analysis, presented below, shows that a
fundamental parameter is the pattern duration T relative to
the neural time scales,

K ¼ Tffiffiffiffiffiffiffiffiffiffiffi
�s�m

p : (2)

The properties of the tempotron can be most easily under-
stood when both N and K are large, with N � K.
This limit is biologically sensible if we consider a neuron
with N � 103 synapses, inputs that are presented for T �
100–1000 ms, and constants �s � 1–10 ms, �m �
10–100 ms. We predict that, for any fixed K, the capacity
is independent of N in the large N limit. Furthermore, the
capacity grows with K as

�c ¼ lnlnK

2 ln2
: (3)

The convergence of the capacity to this expression is slow,

requiring that
ffiffiffiffiffiffiffiffi
lnK

p � 1. Nevertheless, this result has
several qualitative implications. Equation (3) implies that
the capacity of the tempotron is not bounded as K in-
creases, and may exceed the capacity of the well-known
perceptron model (�c ¼ 2 [2]) whose architecture is simi-
lar to the tempotron. Note that when K is OðNÞ, the few
input spikes that arrive within a single decision time win-
dow, T=K, do not carry sufficient information to classify
the patterns. We therefore expect that for any fixed N, �c is
a nonmonotonic function of K, while the value of K
that maximizes the capacity increases with N, as implied
by (3). This prediction is corroborated by numerical simu-
lations in Fig. 2(a). Interestingly, according to Eq. (2), the
performance should also be sensitive to the short time
behavior of the kernel, as confirmed by the simulations
of Fig. 2(b). This short time behavior determines how fast
the membrane potential can change significantly. The
faster this change can be, the easier it is to distinguish
between inputs that arrive within a short interval of time.

In the perceptron model, the solution space for a given
classification task is a convex volume, which shrinks in
size and ultimately vanishes as � approaches the capacity
�c. The overlap between two typical solutions, q0, defined
by the inner product between their normalized weight
vectors, approaches 1 at the critical capacity [2]. Our
theory reveals that the solution space of the tempotron is
of a strikingly different nature. First, the overlap between
two tempotron weight vectors that solve the random clas-
sification problem, q0, approaches zero in theK � 1 limit,
for every �< �c. Second, the solution space is connected
for small � only. For larger values of �, still far below

capacity, the solution space breaks into a large number of
small disconnected clusters, spread across the entire weight
space. The overlap between solutions within the same
cluster, q1, is close to 1, while two randomly chosen
solutions are likely to lie in different clusters and have
overlap q0 � 0. Simulations making use of the learning
algorithm of [5] support this picture. The overlap between
two solutions obtained from two different initial weight
vectors vanishes for all values of� [Fig. 3(a)]. To probe the
overlap between solutions in the same cluster, we perform
a random walk in solution space [11], starting from a
solution found by the tempotron learning algorithm and
rejecting the random walk step attempts if they lead to a
weight vector that is not a valid solution. The autocorrela-
tion function of this random walk drops exponentially fast
to zero for small �, indicating that the solutions space is
connected, and hardly decays for higher �ð<�cÞ, as ex-
pected for a clustered solution space [Fig. 3(b)].
The above results are surprising and counterintuitive

since they imply that, even close to capacity, IF neurons
with very different weights can perform exactly the same
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FIG. 2 (color online). (a) Capacity �c of the tempotron vs K.
Lines with symbols show results from the learning algorithm of
[5]. The solid line shows the large-K theory (3), with an additive
constant [�c ¼ ðlnlnKÞ=2 ln2þ �0, with �0 ¼ 2:58] fitted to the
predictions of the replica method for the discrete tempotron for
Kdiscrete ¼ 2, 3, and 4 (� symbols, no line). To compare the
theory of the discrete tempotron with the simulation results of
the continuous time tempotron, we used Kdiscrete ¼ K=8.
(b) Distribution of learning times for different �s, and for fixed
�m ¼ T=25, � ¼ 2:6, and N ¼ 1000. As �s decreases, so does
the mean learning time, indicating that j�� �cj has increased,
as predicted by Eqs. (2) and (3).
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FIG. 3. (a) Overlap between randomly chosen solutions, q0, at
� ¼ 2 as a function of K. (b) Autocorrelation function
qACð�tÞ � h!̂ðtÞ � !̂ðtþ�tÞi of a random walk inside a con-
nected volume in solutions space for K ¼ 150 and N ¼ 500.
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classification, whereas IF neurons with a high degree of
similarity in their weight vectors will typically fail to solve
the same task. To understand these properties we consider a
tempotron whose N weights are random variables drawn
from any probability distribution with finite first two mo-
ments. With no loss of generality we may choose the mean
and variance of the weights to ensure that UðtÞ has zero
mean and unit variance. The threshold potentialUth is such
that a random pattern is classified by each tempotron as�1
with equal probabilities; i.e., Uth is the median value of the
distribution of the maximum of UðtÞ over time, Umax. The
synaptic potential UðtÞ induced by a random input pattern
approaches, in the large N limit, a temporally correlated
Gaussian distribution. We use extreme value theory (EVT)
of Gaussian processes to evaluate the statistics of Umax

[12]. According to EVT, Umax can be written as

Umax ¼ Uth þ �ðxþ lnln2Þ; (4)

where x obeys the Gumbel density distribution GðxÞ ¼
exp½�x� expð�xÞ	, whose median is � lnln2. The scale

factor is � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnK

p þOð1= lnKÞ and the threshold is

Uth ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnK

p þOð1= ffiffiffiffiffiffiffiffi
lnK

p Þ, where K ¼ T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j d2Cð0Þ

dt2
j

q
and

CðtÞ ¼ hUðt0ÞUðt0 þ tÞi is the autocorrelation function of
UðtÞ. These results are valid provided that CðtÞ decays to
zero at long times andK is large [13]. Note that for a kernel
uðtÞ in Eq. (1) of the form of the difference of exponentials,
K takes the value of Eq. (2).

We now consider two such tempotrons, with an overlap
q between their two weight vectors. Let us choose a pattern
that is classified asþ1 by the first and denote by t1 the time
at which its potential reaches its maximum valueU1 >Uth.
Let us denote the postsynaptic potential of the second
tempotron at time t1 by U2. Conditioned on U1, the proba-
bility distribution of U2 is Gaussian with mean �U2 ¼ qU1

and standard deviation � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
. According to (4)

U1 is close to Uth, and we may approximate Uth � �U2 ’
ð1� qÞ ffiffiffiffiffiffiffiffiffiffiffiffi

2 lnK
p

. Thus, as long as 1� q � 1
lnK , the typical

fluctuations ofU2 which are ofOð�Þ are much smaller than
the gap between �U2 and the threshold [Fig. 4(a)]; henceU2

is very likely smaller thanUth. This implies that the overall
probability that the second tempotron’s potential crosses
the threshold at any time remains close to 1=2, unless

q 
 1�O

�
1

lnK

�
: (5)

Thus, two tempotrons are likely to agree on their classifi-
cations of a random pattern only if the overlap in their
synaptic weights is close to 1. This result is confirmed by
the simulations shown in Fig. 4(b). We also present the
simulation results for the Hodgkin-Huxley model [13], a
classical biophysical model for spike generation.
Interestingly, despite its complex dynamics, the classifica-
tion pattern of a pair of Hodgkin-Huxley neurons is similar
to that of the tempotron, indicating that this behavior does

not depend on the details of the spike generation but on the
summation of input spikes within temporal windows. In
contrast, in the case of the perceptron, which lacks tempo-
ral windows, the probability that two weight vectors agree
on their classification increases roughly linearly with their
overlap q [Fig. 4(b)]. The above result provides a qualita-
tive explanation of the clustered nature of the solution
space. Consider one solution to the classification task.
Very similar weight vectors, with overlaps larger than 1�
Oð1= lnKÞ, are likely to be solutions, too, and compose a
very small connected cluster of solutions around the first
solution. On the other hand, having any positive overlap
smaller than this scale does not provide a significant ad-
vantage in terms of classification error. Hence, entropy
pressure for decreasing the overlap wins, yielding a vanish-
ingly small overlap q0 between two typical solutions.
The fact that q0 is small for all � has important con-

sequences. First, q0, in general, measures the strength of
the correlations between the solution weight vector and
individual quenched learned patterns. Small q0 implies,
therefore, that the statistics of the potential after learning
is approximately Gaussian, with variance and mean which
are governed by the requirement that random patterns
induce spiking with a probability of 12 . As described above,

this implies that the distribution of Umax of learnt patterns
has a Gumbel shape. Furthermore, EVT predicts that
the number of threshold crossings in a pattern of duration
T, Nspikes, obeys a Poisson distribution with a mean rate

r ¼ ln2
T , consistent with a 1

2 probability of firing within time

T [12]. These predictions are confirmed by numerical
simulations, as shown in Figs. 1(b) and 1(c).
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FIG. 4 (color online). (a) Time traces of the potentials of a
Tempotron with random weights, U1ðtÞ (bold line), and of seven
other Tempotrons, U2ðtÞ (gray lines), having overlap q ¼ 0:8
with the first one. The pattern is the same for all Tempotrons,
and is classified as þ1 by the first Tempotron: U1ðtÞ is maximal
in t1 and exceeds Uth. The error bar is centered in t ¼ t1, �U2 ¼
qU1ðt1Þ, and has height

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
. Parameters are K ¼ 100,

N ¼ 1000. (b) Probability that two neurons will classify a
random pattern in the same manner, Pequal, vs overlap between

their weight vectors, q, for the perceptron (theory and simula-
tions in black), the tempotron (blue � and þ symbols corre-
spond, respectively, to K ¼ 100 and K0 ¼ 4K ¼ 400) and
the Hodgkin-Huxley (red squares and circles correspond to
T ¼ 1:5 sec and T0 ¼ 4T ¼ 6 sec , respectively [13]) models.
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EVT provides a basis for estimating the value of the
capacity. Drawing an analogy from the replica calculations
(see [14] and below), we estimate the entropy of clusters in
the solution space, Scl, through Scl ¼ ðlnV � lnVclÞ=N,
where V and Vcl are, respectively, the total volume of
solutions and the typical volume of one cluster. As q0 ’
0, V is simply the product of the individual probabilities
that the Gaussian potentialU crosses the threshold for each
þ1 pattern and does not do so for each �1 pattern: V ¼
ð12ÞN�. Assuming that the typical cluster is of ‘‘compact’’

shape, its volume is given by Vcl ¼ ð1� q1ÞN=2, where q1
is the typical overlap between solutions within the cluster
and it scales according to Eq. (5) as 1� q1 ¼ Oð1= lnKÞ.
We therefore obtain

Scl ’ 1
2 lnlnK � � ln2: (6)

Classifications are possible as long as Scl > 0, which yields
the capacity (3).

The above results are supported by an independent
statistical mechanical study of a simpler model, the
discrete tempotron (see Supplementary Note of [5]), where
time is discrete, t ¼ ‘�, ‘ ¼ 1; 2; 3; . . . , and the potential
U‘ is the sum of the synaptic weights !i, multiplied by the
number of spikes emitted by input i in the time bin ‘. The
patterns to be classified are associated with an internal
representation (IR), which consists of the set of time-bin
indices ‘ such that U‘ > Uth. The weight vectors imple-
menting the same IR form a convex domain of solutions.
As the entire solution space is not expected to be convex,
calculating its volume is a difficult task. Instead, following
[8,14], we have calculated the average value of the loga-
rithm of the number of typical implementable IR domains,
SIR, as a function of �. The calculation, based on the
replica method, involves two overlaps: the intraoverlap of
a domain, qIR1 , and the interoverlap between two domains,
qIR0 . When K ¼ T

� � 1 and � � 1
lnK , we find qIR0 � � lnK

K ,

1� qIR1 � 1
�2 lnK

, and SIR given by the right-hand side of

(6). Hence qIR0 vanishes as long as � � lnK, and the

scaling of qIR1 is compatible with q1 given by EVT. This
calculation also enables us to estimate the capacity at finite
K [see Fig. 2(a)]. The similarity between quantities defined
in terms of connected clusters of solutions, and those
defined in terms of IR domains is a consequence of the
binary character of the overlaps in the largeK limit. For the
same reason, further effects of replica symmetry breaking
should affect only subleading corrections to �c. Numerical
simulations show that the discrete tempotron behaves very
similarly to the continuous time tempotron (data not
shown). This implies that the computational capability of
the tempotron is not sensitive to the detailed shape of the
temporal integration.

In conclusion, we have presented a theory of the com-
putational capacity of a neuron that performs classification
of inputs by integrating incoming spikes in space and time
and generates its decision via threshold crossing.
Importantly, the tempotron is not constrained to fire at a
given time in response to a target pattern. Thus, by adjust-
ing the timing of its output spikes, the tempotron can
choose the spatio-temporal features that will trigger its
firing for each target pattern. Despite the simplicity of
its architecture and dynamics, this property of the tempo-
tron decision rule yields a rather complex structure of
the solution space and accounts for the superior perform-
ance of the tempotron compared to the perceptron and to
perceptron-based models for learning temporal sequences
[15] which specify the desired times of the output spikes.
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